

Revised: 16 July 1995

Software Development Kit

Adobe Photoshop 3.0.4

Adobe Photoshop 3.0.4 Software Development Kit

Copyright

 1991–95 Adobe Systems Incorporated. All rights reserved.
Portions Copyright

 1990–91 Thomas Knoll

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commit-
ment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes
no responsibility or liability for any errors or inaccuracies that may appear in
this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such
license.

Adobe, Adobe Premiere, Adobe Photoshop, Adobe Illustrator, Adobe Type
Manager, ATM and PostScript are trademarks of Adobe Systems Incorporated
that may be registered in certain jurisdictions. Macintosh and Apple are
registered trademarks, and Mac OS is a trademark of Apple Computer, Inc.
Microsoft, Windows are registered trademarks of Microsoft Corporation. All
other products or name brands are trademarks of their respective holders.

Most of the material for this document was derived from earlier works by
Thomas Knoll, Mark Hamburg and Zalman Stern. Additional contributions
came from David Corboy, Kevin Johnston, Sean Parent and Seetha Naray-
anan. It was then compiled and edited by Dave Wise and Paul Ferguson.

Version History

7 November 1994 David J. Wise First draft

15 January 1995 David J. Wise First release

8 February 1995 Seetharaman Narayanan MS-Windows modifications

16 July 1995 Paul D. Ferguson Reformatted and updated for
Photoshop 3.0.4

Table of Contents

Adobe Photoshop Software Development Kit

3

1 Introduction 3

2 Plug–in Basics 5

Audience 8

How to use this guide 8

Contents of the Photoshop plug–in toolkit 8

About this guide 9

Plug–in modules and plug–in hosts 10

A short history lesson 10

Version 2.5 versus version 3.0 plug–in modules 11

Types of plug–in modules 12

Plug–in module files 12

Plug–in file types and extensions 12

Basic data types 13

The plug–in module interface 14

Error reporting 14

About boxes 15

Memory management strategies 16

Creating plug–in modules for Mac OS 17

Hardware and system software configuration 17

Resources in a plug–in module 17

Global variables 17

Segmentation 18

Installing plug–in modules 18

Example plug–in modules 18

Notes for CodeWarrior Gold users 19

Notes for CodeWarrior Bronze users 19

Creating plug–in modules for Windows 21

Hardware and software configuration 21

Structure packing 21

Resources 21

Calling a Windows plug–in 21

Installing plug–in modules 22

Utility programs and source code 22

Example plug–in modules 23

3 Plug–in Host Callbacks 24

Direct callbacks 25

TestAbortProc() 25

UpdateProgressProc() 25

ProcessEventProc() 25

DisplayPixelsProc() 25

AdvanceStateProc () 26

ColorServicesProc () 26

Table of Contents

Adobe Photoshop Software Development Kit

4

SpaceProc () 27

HostProc () 27

Callback suites 28

Buffer suite 29

AllocateBufferProc() 29

LockBufferProc() 29

UnlockBufferProc() 30

FreeBufferProc() 30

BufferSpaceProc() 30

Pseudo–Resource suite 31

CountPIResourcesProc() 31

GetPIResourceProc() 31

DeletePIResourceProc() 31

AddPIResourceProc() 31

Handle suite 32

NewPIHandleProc () 32

DisposePIHandleProc () 32

GetPIHandleSizeProc () 32

SetPIHandleSizeProc () 32

LockPIHandleProc () 32

UnlockPIHandleProc () 33

RecoverSpaceProc () 33

Image services suite 34

PIResampleProc () 34

Property suite 36

GetPropertyProc() 36

SetPropertyProc() 36

Property keys 37

4 PiPL Resources 39

Property structures and property lists 39

Creating PiPL resources 39

Loading PiPL resources 40

Plug–in property lists 40

Plug–in properties 40

General properties 42

Code descriptor properties 44

Export–specific properties 46

Filter–specific properties 47

Format–specific properties 50

5 PiMI Resources 53

6 Acquire Modules 55

Sample plug–in 55

Table of Contents

Adobe Photoshop Software Development Kit

5

Calling sequence 56

acquireSelectorPrepare 56

acquireSelectorStart 57

acquireSelectorContinue 57

acquireSelectorFinish 57

acquireSelectorFinalize 58

Error return values 59

The Acquire parameter block 60

7 Export Modules 65

Sample plug–ins 65

Calling sequence 66

exportSelectorPrepare 66

exportSelectorStart 66

exportSelectorContinue 67

exportSelectorFinish 67

Error return values 67

The Export parameter block 68

8 Filter Modules 72

Sample plug–in 72

Calling sequence 73

filterSelectorParameters 73

filterSelectorPrepare 74

filterSelectorStart 74

filterSelectorContinue 74

filterSelectorFinish 75

Error return values 75

The Filter parameter block 76

9 Format Modules 83

Sample plug–in 83

Format module operations 83

Reading a file (file filtering) 84

Reading a file (read sequence) 85

formatSelectorFilterFile 85

formatSelectorReadPrepare 85

formatSelectorReadStart 85

formatSelectorReadContinue 86

formatSelectorReadFinish 86

Writing a file 87

Writing a file (options sequence) 88

formatSelectorOptionsPrepare 88

formatSelectorOptionsStart 88

formatSelectorOptionsContinue 88

Table of Contents

Adobe Photoshop Software Development Kit

6

formatSelectorOptionsFinish 88

Writing a file (estimate sequence) 89

formatSelectorEstimatePrepare 89

formatSelectorEstimateStart 89

formatSelectorEstimateContinue 89

formatSelectorEstimateFinish 89

Writing a file (write sequence) 90

formatSelectorWritePrepare 90

formatSelectorWriteStart 90

formatSelectorWriteContinue 91

formatSelectorWriteFinish 91

Image Resources 91

Error return values 91

The Format parameter block 92

10 Document File Formats 97

Image resource blocks 98

Path resource format 100

Path points 100

Path records 100

Photoshop 3.0 files 102

Photoshop 3.0 files under Windows 102

Photoshop 3.0 files under Mac OS 102

Photoshop 3.0 file format 103

File header section 103

Color mode data section 104

Image resources section 104

Layer and mask information section 104

Image data section 105

Layer and mask records 106

Photoshop EPS files 110

Filmstrip files 111

TIFF files 113

TIFF files under Mac OS 113

11 Load File Formats 115

Arbitrary Map 116

Brushes 117

Color Table 119

Colors 120

Command Settings File 122

Curves 124

Duotone options 126

Halftone screens 128

Table of Contents

Adobe Photoshop Software Development Kit

7

Hue/Saturation 129

Ink colors setup 130

Custom kernel 131

Levels 132

Monitor setup 133

Replace color/Color range 134

Scratch Area 135

Selective color 136

Separation setup 137

Separation tables 138

Transfer function 140

A Data Structures 141

PSPixelMap 142

PSPixelMask 144

ColorServicesInfo 145

PlugInMonitor 148

ResolutionInfo 149

DisplayInfo 150

B PiPL Grammar 151

Index 156

1

Introduction

Adobe Photoshop Software Development Kit

8

Welcome to the Adobe Photoshop

 Software Developers Toolkit!

With this toolkit you can create software, known as

plug–in modules

, that
expand the capabilities of Adobe Photoshop.

Audience

This toolkit is for C programmers who wish to write plug–ins for Adobe
Photoshop on Macintosh and Windows systems.

This guide assumes that you are proficient in C language programming and
tools. The source code files in this toolkit are written for the Apple MPW
compiler and Metrowerks CodeWarrior on the Mac, and Microsoft Visual C++
on Windows and Windows NT.

You should have a working knowledge of Adobe Photoshop, and understand
how plug–in modules work from a user’s viewpoint. This guide assumes you
understand Photoshop terminology such as paths, layers, masks, etc. For
more information, consult the

Adobe Photoshop User Guide

.

This guide does not contain information on creating plug–in modules for
Unix versions of Photoshop.

How to use this guide

This toolkit documentation starts with information that is common to all the
plug–in types.

Chapter 2 provides an overview of writing plug–ins, including specific infor-
mation for Mac OS and Windows development.

Chapter 3 discusses callback routines into Photoshop.

Chapters 4 and 5 discuss PiPL and PiMI resources, which provide the plug–in
host with information about plug–in modules.

Chapters 6 through 9 cover four types of plug–in modules (Acquire, Export,
Filter, and Format) in detail.

The best way to use this guide is to first read chapters 1 through 5. Then
turn to the chapter containing specific information on the type of plug–in
you’re going to write.

If you are new to writing plug–ins, you should also study and understand the
source code to the sample plug–ins. You may choose to use these source files
as the starting point for creating your own plug–in module.

Contents of the Photoshop plug–in toolkit

The files included with this toolkit include C language header files PITypes.h,
PIGeneral.h, PIAqcuire.h, PIExport.h, PIFilter.h, and PIFormat.h that define
the structures and constants you will need to build plug–in modules. The
“Examples” directory contains complete source code examples for each plug–
in type.

Introduction

Adobe Photoshop Software Development Kit

9

There is also a directory containing information about the Adobe Developer
Association.

About this guide

This programmer’s guide is designed for readability on screen as well as in
printed form. The page dimensions were chosen with this in mind. The
Frutiger font family is used throughout the manual.

To print this manual from within Adobe Acrobat Reader, select the “Shrink
to Fit” option on the Print dialog.

2

Plug-in Basics

Adobe Photoshop Software Development Kit

10

This chapter describes what plug–in modules are and provides information
common to all plug–in modules. You should understand this material before
proceeding to chapters on specific types of plug–in modules.

This chapter also contains information about compiling and testing plug–in
modules under Mac OS and Microsoft Windows. For additional compiler–
specific information, read the toolkit header files.

Plug–in modules and plug–in hosts

Adobe Photoshop

plug–in modules

 are software programs developed by
Adobe Systems, and third–party vendors in conjunction with Adobe Systems,
to extend the standard Adobe Photoshop program. The Adobe Photoshop
software includes plug–in modules for importing and exporting images and
plug–in filter modules for producing special effects. Plug–in modules can be
added or updated independently by end users to customize the application.

This guide also frequently refers to

plug–in hosts

. A plug–in host is respon-
sible for loading plug–in modules into memory and calling them. Adobe
Photoshop is a plug–in host.

Other Adobe applications such as Adobe Premiere support Photoshop plug–
in modules. In addition, many applications from third–party developers
support the use of Photoshop plug–in modules. (Most plug–in hosts are
application programs, but this not a requirement. A Photoshop plug–in host
may itself be a plug–in to another application, for example.)

This toolkit and guide are not designed for developers interested in creating
plug–in hosts; the emphasis in this guide is clearly on plug–in modules.

Unless otherwise stated, Adobe Photoshop 3.0.4 is assumed to be the plug–in
host throughout this manual.

A short history lesson

Plug–ins are not unique to Photoshop. Many other Macintosh and Window
applications support some form of plug–in extensions.

Perhaps the best known example is Apple’s HyperCard, with its support for
XCMD’s and XFCN’s. One of the first companies to incorporate plug–in
modules into their products was Silicon Beach, in its Digital Darkroom and
SuperPaint products.

Silicon Beach’s plug–in implementation was well designed; plug–in modules
reside in individual files (rather than having to be pasted into the applica-
tion using ResEdit), allowing the plug–in files to be placed anywhere (not
just in the system folder). Silicon Beach’s design also incorporated the
concept of version numbering, which allowed for smooth migration as new
functionality was added to the interface.

Adobe Photoshop’s implementation of plug–in modules is similar to that
used by Silicon Beach. It uses a similar calling sequence, and the same version
number scheme.

Plug-in Basics

Adobe Photoshop Software Development Kit

11

However, the similarity ends there. As Photoshop’s plug–in architecture
evolved, the detailed interface for Photoshop’s plug–in modules became
completely different from that used by Silicon Beach. The differences were
required primarily to support color images and Adobe Photoshop’s virtual
memory scheme.

The original plug–in interface was designed when Adobe Photoshop was a
Macintosh only product. This heritage is still apparent today, and affects
Windows developers building plug–ins. While you can build plug–in modules
for Windows without needed a Macintosh, there are a number of data struc-
tures and Mac toolbox–like calls that will appear in your Windows code. The
good news is that this makes building plug–ins that work across both Mac OS
and Windows easier. The bad news is that if you’re developing for the
WIndows platform, some of the terminology may be unfamiliar.

The other important area where the differences between Macintosh and
Windows affect you is byte ordering. Motorola and PowerPC processors store
pointers, 16–, and 32– bit numbers in big endian format, while Intel proces-
sors user little endian format. Because many Photoshop files are designed to
work across both platforms, the Photoshop engineering team chose to stan-
dardize on big endian format (Photoshop’s heritage shows through again).
When programming under Windows, you must be careful to handle byte
ordering properly.

Version 2.5 versus version 3.0 plug–in modules

The plug–in interface changed significantly with the release of Adobe Photo-
shop 3.0. The main difference is the use of 'PiPL' resources to describe plug–
in module information. This replaces the older 'PiMI' resources, although
Photoshop still fully support 'PiMI' based plug–in modules. 'PiPL' and 'PiMI'
resources are discussed in chapters 4 and 5, respectively.

The other significant change in version 3.0 is the introduction of the
AdvanceStateProc callback function. This callback provides improved perfor-
mance for plug–in modules that handle large images. The AdvanceStateProc
callback is discussed in chapter 3.

In Photoshop version 3.0.4, the plug–in architecture was again enhanced.
You can now set certain properties of a plug–in host using the SetProper-
tyProc callback. The GetPropertyProc and SetPropertyProc callbacks were
grouped together to form a new callback suite. See chapter 3 for details.

Version 3.0.4 also adds a new callback suite: the image services suite. The
two callback functions in this suite allow you to resample image data, and
are useful for various types of filter, acquire, and export modules. Again, see
chapter 3 for details.

Plug-in Basics

Adobe Photoshop Software Development Kit

12

Types of plug–in modules

Adobe Photoshop plug–in modules are separate files containing code that
extend Photoshop without actually modifying the base application.

This document describes four different types of plug–in modules:

1.

Acquire modules

 open an image in a new window. Acquire modules
can be used to interface to scanners or frame grabbers, read images in
unsupported or compressed file formats, or to generate synthetic
images. These modules are accessed through the Acquire sub–menu.

2.

Export modules

 output an existing image. Export modules can be
used to print to printers that do not have Chooser–level driver support
(Mac OS), or to save images in unsupported or compressed file formats.
These modules are accessed through the Export sub–menu.

3.

Format modules

 provide support for reading and writing additional
image formats. These appear in the format pop–up menu in the
Open..., Save As... and Save a Copy... dialogs.

4.

Filter modules

modify a selected area of an existing image. These
modules appear under the Filter menu. These are the types of plug–ins
most Photoshop users are familiar with, and may have very sophisti-
cated features.

In addition, Adobe Photoshop supports two other types of plug–in modules:
parser modules and hardware accelerator modules (also known as extension
modules). These are beyond the scope of this toolkit and will not be
discussed further. They are mentioned here only for completeness. If you
need information about these module types, please contact the Adobe
Developers Association.

Plug–in module files

Plug–in module files must reside in specific directories for Adobe Photoshop
to recognize them. Under Mac OS, plug–in files must be in either the same
folder as the Adobe Photoshop application, or in the folder identified in the
Photoshop preferences dialog, or in a sub–folder of that folder. Under
Windows, plug–in files must be in the directory identified by the PLUGINDI-
RECTORY profile string in PHOTOSHO.INI.

Usually, a plug–in module file contains a single plug–in. You can create files
with multiple plug–in modules, however, in most cases you should not do
this since it reduces the user’s control of which modules are installed.

There are situations when it may be appropriate to have more than one
module in a single plug–in file. One example is matched acquisition/export
modules, although these frequently are better implemented as a file format
module. Another example is a set of closely related filters, since the decrease
in user control may be offset by an improvement in the ease with which
users can manage their plug–in files.

Plug–in file types and extensions

Plug–in module files should follow the guidelines in table 2–1 for the type
identifier under Mac OS, and the file extension under Windows. While these
are only recommendations under Adobe Photoshop 3.0, these must be used
if your plug–in module runs under earlier versions of Photoshop.

Plug-in Basics

Adobe Photoshop Software Development Kit

13

On the Macintosh, your plug–in should use the same creator ID as Adobe
Photoshop ('8BIM') if you wish to use the standard plug–in icons defined in
Photoshop.

Basic data types

The basic types shown in table 2–2 are commonly used in the Photoshop
plug–in API. Most of these are declared in PITypes.h.

Table 2–1: Plug–in file types and extensions

Plug–in Type Macintosh
File Type

Windows
File Extension

General (any type of plug–in) 8BPI .8BP

Acquire modules 8BAM .8BA

Export modules 8BEM .8BE

Filter plug–ins 8BFM .8BF

File Format plug–ins 8BIF .8BI

Accelerator Extensions 8BXM .8BX

Parser plug–ins 8BYM .8BY

Table 2–2: Basic data types

Name Description

int8, int16, int32,
unsigned8, unsigned16,
unsigned32

These are 8, 16 and 32 bit integers respectively.

Boolean Boolean flags are stored in a single byte, 0=FALSE, any other
value=TRUE.

OSType Same representation as an int32 but typically denotes a Mac-
intosh style 4 character code like 'PiPL'.

TypeCreatorPair A structure of two OSTypes denoting a file type and creator
code. The type code is the first field of the structure and the
creator code is second.

FlagSet This is an array of boolean values where the first boolean is
contained in the high order bit of the first byte. The eighth
entry would be in the high–order bit of the second byte, etc.

PString A Pascal style string where the first byte gives the length of
the string and the content bytes follow.

Structures Structures are typically represented the same way they would
be in memory on the target platform. Native padding and
alignment constraints are observed. Several common struc-
tures, such as RGBtuple, are declared in PITypes.h.

VPoint, VRect These are like Macintosh Point and Rect structures, but have
32–bit coordinates.

Plug-in Basics

Adobe Photoshop Software Development Kit

14

The plug–in module interface

A plug–in host calls a plug–in module in response to a user action. Generally,
executing a user command results in a series of calls from the plug–in host to
the plug–in module. All calls from the host to the module are done through
a single entry point, the main () routine of the plug–in module. The proto-
type for the main entry point is:

#if MSWindows
void ENTRYPOINT (

short selector,

void * pluginParamBlock,

long * pluginData,

short * result);

#else

pascal void main (

short selector,

Ptr pluginParamBlock,

long * pluginData,

short * result);

#endif

The

selector

 parameter indicates the type of operation requested by the
plug–in host. Selector=0 always means display an about box. Other selector
values are discussed in later chapters for each plug–in module type.

Within your main function, you will typically have a switch statement that
dispatches the pluginParamBlock, pluginData, and result parameters to
different handlers for each selector that your plug–in module responds to.
The example plug–in modules show one style of dispatching to selector
handlers.

The

pluginParamBlock

 parameter points to a large structure that is used to
pass information back and forth between the host and the plug–in module.
The exact definition of this parameter block fields depends on the type of
plug–in module. Refer to chapters 6 through 9 for descriptions of each plug–
in type’s parameter block.

The

pluginData

 parameter points to a long integer (32–bit value), which
Photoshop will maintain for your plug–in module across invocations.

One standard use for this field is to store a pointer or handle to a block of
memory used to reference the plug–in’s “global” data. It will be zero the
first time the plug–in module is called.

The

result

 parameter points to a short integer (16–bit value). Each time your
plug–in module is called, it must set

result

; you should not count on the
result parameter containing a valid value when called. Returning a value of
zero indicates that no error occurred within your plug–in module’s code.

Error reporting

Returning a non–zero number in the result field indicates to the plug–in host
that some sort of error occurred. It may also indicate that the user cancelled
the operation somewhere in your plug–in code.

Returning a positive value means that your plug–in module encountered an
error and that your plug–in has already displayed any appropriate error
message to the user. If the user cancels the operation in any way, your plug–
in should return a positive value without reporting an error to the user.

Plug-in Basics

Adobe Photoshop Software Development Kit

15

Returning a negative value also means that your plug–in module encoun-
tered an error, but that the plug–in host should display its standard error
dialog describing the error.

Table 2–3 shows the error code ranges used by the different types of plug–in
modules. Refer to chapters 6 through 9 for more details.

Mac OS and Windows operating system error codes may be returned to the
plug–in host also. In PITypes.h, several common Mac OS error codes are
defined for use under Windows, simplifying programming for both Mac OS
and Windows.

About boxes

All plug–in modules should respond to a selector value of zero, which means
display an about box. You have complete freedom to display any kind of
about box you wish, but to fit in smoothly with the Adobe Photoshop inter-
face you should obey the following conventions:

1. The About box should be centered on the main (menu bar) screen, with
1/3 of the remaining space above the dialog, and 2/3 below. Be sure to
take into account the menu bar height. Under Mac OS (System 7 or
later), you can specify a flag in the DLOG resource that automatically
positions the about box in the proper position.

2. The window should not have an OK button, but should instead respond
to a click anywhere in its dialog.

3. It should respond to the return and enter keys.

When Photoshop attempts to bring up the about box for a plug–in module,
it will make the about box selector call to each of the plug–ins in the same
file. If you have compiled more than one plug–in module into a single file,
only one of them should display an about box, which should describe all of
the modules. All other plug–in modules should ignore the about box selector
call and just return to the plug–in host.

Table 2–3: Error code ranges

Type of module Error Range

Acquire –30000 to –30099

Filter –30100 to –30199

Export –30200 to –30299

Format –30500 to –30599

General Errors –30900 to –30999

Plug-in Basics

Adobe Photoshop Software Development Kit

16

Memory management strategies

In most cases, the first action a plug–in module must take after the user
executes it is to negotiate with Photoshop about memory usage. Other plug–
in hosts may not support the same memory options.

The negotiation begins when Photoshop sets the

maxData

 field of the plug-
inParamBlock to indicate the maximum number of bytes it would be able to
free up. The plug–in module then has the option of reducing this number.
Reducing

maxData

 can speed up most operations, since freeing up the
maximum amount of memory requires Photoshop to move all of the image
data for any currently open images out of of RAM and into its virtual
memory file.

If you know that your plug–in module’s memory requirements will be small—
if it can process the image data in pieces, or if the image size is small—you
should reduce

maxData

 to your actual requirements. This will allow many
plug–in operations to be performed entirely in RAM.

In many cases, your plug–in only needs a small amount of memory, but will
operate faster if given more. You must make a tradeoff.

One strategy is to divide

maxData

 by 2, thus allocating half the memory to
Photoshop and half to the plug–in.

Another good strategy is to reduce

maxData

 to zero, and then use the
buffer and handle suites to allocate memory as it is needed. Often, this is
most efficient from Photoshop’s viewpoint, but requires additional program-
ming.

If performance is a concern, you may want to perform quantitative tests of
your plug–in module to compare different memory strategies.

Plug-in Basics

Adobe Photoshop Software Development Kit

17

Creating plug–in modules for Mac OS

Photoshop plug–in modules for the Macintosh can be created using any of
the popular C compilers including Apple MPW, Symantec THINK C, or
Metrowerks CodeWarrior. The example plug–ins in this toolkit include both
MPW makefiles and CodeWarrior project files.

You can create plug–in modules for 680x0, PowerPC, or both (fat binaries). If
your plug–in module uses floating point arithmetic, you can create plug–in
code that is optimized for Macintosh systems with floating–point units (FPU).
If you desire, you can also provide a version of your code that does not
require an FPU, and Photoshop will execute the proper version depending on
whether an FPU is present.

Plug–in modules use code resources on 680x0 Macs and shared libraries (the
code fragment manager) on PowerPC systems.

When the user performs an action that causes a plug–in module to be called,
Photoshop opens the resource fork of the file the module resides in, loads
the code resource (68K) or shared library (PowerPC) into memory. On 680x0
systems, the entry point is assumed to begin at the first byte of the resource.

Hardware and system software configuration

Adobe Photoshop plug–ins can assume that the Macintosh has 128K or larger
ROMs, and System 6.0.2 or later. Photoshop 3.0 requires System 7.

Keep in mind that older versions of Photoshop will run, and thus your plug–
in may be called, on machines as old as the Mac Plus. You should use the
Gestalt routines to check for 68020 or 68030 processors, math co–processors,
256K ROMs, and Color or 32–Bit QuickDraw if they are required.

Photoshop 3.0 requires a 68020 or better, Color QuickDraw, and 32–Bit
QuickDraw, so if your plug–in only runs under Photoshop 3.0, you can
assume these features are present.

Resources in a plug–in module

Besides the code resources (680x0), your plug–in module may include a
variety of resources for your plug–in’s user interface, stored preferences, etc.

Every plug–in module must include either a complex data structure stored in
a ‘PiPL’ resource or a simpler structure in a ‘PiMI’ resource (these are
discussed in great detail in chapters 4 and 5). These resources provide infor-
mation that Adobe Photoshop uses to identify plug–ins when Photoshop is
first launched and when a plug–in is executed by the user.

Your plug–in module should also have a ‘vers’ resource (ID=1) to provide
Finder version information. If you want a custom icon for your plug–in
module, you should include the appropriate BNDL resource and colored icon
resources.

Global variables

Most Macintosh applications reference global variables as negative offsets
from register A5 (680x0 processors). If a plug–in module declares any global
variables, their location would overlap Photoshop’s global variable space;
changing them will likely result in a quick and spectacular crash.

One common way code resources avoid this problem is to use the A4 register
in place of the A5 register. The Metrowerks CodeWarrior C compiler, for
example, contains header files (SetupA4.h, A4Stuff.h) and pre–compiled

Plug-in Basics

Adobe Photoshop Software Development Kit

18

libraries designed for A4 register usage. If you are building a plug–in
module to run on 680x0 systems you should not declare any global variables
in your plug–in module code unless you specifically use the A4 support
provided with your compiler. Refer to your compiler documentation for
more details.

Plug–in modules that are compiled native for PowerPC systems do not have
this limitation, since they use the code fragment manager (CFM) instead of
code resources. If your plug–in module only runs on PowerPC, you may safely
declare and use global variables. Refer to the appropriate Apple documenta-
tion for more information.

If you need global data in your 680x0 compatible plug–in module, one alter-
native to using A4 is to dynamically allocate a new block of memory at
initialization time using the Photoshop handle or buffer suite routines, and
return this to Photoshop in the ‘data’ parameter. Photoshop will save this
reference and return it to your plug–in each time it is called subsequently.
This is the approach taken in the sample plug–ins.

Segmentation

Macintosh 680x0 applications have a special code segment called the jump
table. When a routine in one segment calls a routine in another segment, it
actually calls a small glue routine in the jump table segment. This glue
routine loads the routine’s segment into memory if needed, and jumps to its
actual location.

The jump table is accessed using positive offsets from register A5. Since
Photoshop is already using A5 for its jump table, the plug–in cannot use a
jump table in the standard way.

The simplest way to solve this is to link all the plug–in’s code into a single
segment. This usually requires setting optional compilation/link flags in your
development environment if the resultant segment exceeds 32k.

Installing plug–in modules

To install a plug–in module, drag the module’s icon to either the same folder
as the Adobe Photoshop application, or the plug–ins folder designated in
your Photoshop preferences file. Photoshop 3.0 searches for plug–ins in the
application folder, and throughout the tree of folders underneath the desig-
nated plug–ins folder. Aliases are followed during the search process.
Folders with names beginning with “

¬

” (Option–L on the Macintosh
keyboard) are ignored.

Example plug–in modules

The six sample plug–ins included with this toolkit can be built using Apple
MPW or Metrowerks CodeWarrior. They have been tested against MPW 3.3.1
and CodeWarrior 6.

The toolkit also includes new header files. PIGeneral.h and PITypes.h contain
definitions useful across multiple plug–ins. PIAbout.h contains the informa-
tion for the about box call for all plug–in types. PIAcquire.h, PIExport.h,
PIFilter.h, and PIFormat.h are the header files for the respective types of
plug–in modules.

Also included are two sets of utilities: DialogUtilities and PIUtilities.

DialogUtilities.c and DialogUtilities.h provide general support for doing
things with dialogs including creating movable modal dialogs which make
appropriate calls back to the host to update windows.

Plug-in Basics

Adobe Photoshop Software Development Kit

19

PIUtilities.c and PIUtilities.h contain various routines and macros to make it
easier to use the host callbacks. The macros make assumptions about how
global variables are being handled and declared; refer to the sample source
code to see how PIUtilities are used.

Notes for CodeWarrior Gold users

Adobe Photoshop 3.0 uses the ‘PiPL’ resource (see chapter 4) to identify the
type of processor for which the plug-in module was compiled: 680x0,
PowerPC or both. The Macintosh OS uses a different resource, ‘cfrg’, to indi-
cate the presence of code for the PowerPC microprocessor. The ‘cfrg’
resource is automatically generated by the Metrowerks CodeWarrior devel-
opment environment.

Normally, this is not a problem. It could become a problem, however, if you
or a user of your plug–in run an application to reduce a fat binary (680x0
and PowerPC) plug–in to 680x0 only. Fat stripper applications search for
‘cfrg’ resources and when found remove any PowerPC code and the ‘cfrg’
resource. These applications are not aware of the ‘PiPL’ resource; the
resulting 680x0–only plug–in will still indicate that it contains PowerPC code.

After you create a PowerPC plug–in module, you should manually remove
the ‘cfrg’ resource with a resource editor to prevent someone from acci-
dently deleting the PowerPC code by stripping.

You should always be sure to specify the correct PiPL code descriptors when
building a plug–in. All of the example plug–ins in the examples folder have
PiPL resources with both code descriptors, as follows:

#if Macintosh
Code68K { '8BIF', $$ID },

CodePowerPC { 0, 0, "" },

#endif

If your plug-in module includes code only for the 680x0 or only for the
PowerPC, remove the other code descriptor before compiling the .r file. For
instance, a PowerPC–only plug–in module’s PiPL source file would have these
lines in the PiPL descriptor:

#if Macintosh
CodePowerPC { 0, 0, "" },

#endif

Notes for CodeWarrior Bronze users

The sample CodeWarrior project files in this toolkit are designed for
CodeWarrior Gold to create “fat” binaries. If you use CodeWarrior Bronze to
build 680x0–only plug–in modules, you should make two changes to the
sample files.

First, you should change the Project preferences to output a plug–in file with
the correct file name, creator, and type. (The 68K project files included in
the toolkit output ResEdit resource files which are then used by the PPC
project files.)

For example, the Dissolve.68k.

µ

 project in the Filters sample is set to output
a code resource named “Dissolve.68k.rsrc” with creator ‘RSED’ and type
‘rsrc’. You should change these to “Dissolve”, ‘8BIM’, and ‘8BFM’ respec-
tively.

Second, you should recompile the PiPL resource after removing the PowerPC
code descriptor. The PiPL statements:

Plug-in Basics

Adobe Photoshop Software Development Kit

20

#if Macintosh
Code68K { '8BIF', $$ID },

CodePowerPC { 0, 0, "" },

#endif

should be changed to:

#if Macintosh
Code68K { '8BIF', $$ID },

#endif

See chapter 4 for more information about PiPL resources.

Plug-in Basics

Adobe Photoshop Software Development Kit

21

Creating plug–in modules for Windows

Photoshop plug–ins for Windows can be created using Microsoft

 Visual
C++. The example plug–ins in this toolkit include Visual C++ makefiles.

When the user performs an action that causes a plug–in module to be called,
Photoshop does a LoadLibrary call to load the module into memory. For each
PiPL resource found in the file, Photoshop calls GetProcAddress (routine-
Name) where “routineName” is the name associated with the
PIWin32X86CodeProperty property to get the routine’s address.

If the file contains only PiMI resources and no PiPLs, Photoshop does a GetP-
rocAddress for each PiMI resource found in the file looking for the entry
point ENTRYPOINT% where % is the integer nameID of the PiMI resource to
get the routine’s address.

Hardware and software configuration
Adobe Photoshop plug–ins may assume Windows 3.1 in standard or
enhanced mode, or Windows NT 3.5. Adobe Photoshop requires at least an
80386 processor.

Structure packing
Structure packing for all plug–in parameter blocks (FilterRecord,
FormatRecord, AcquireRecord, ExportRecord and AboutRecord) should be
the default for the target system (this has changed for 32–bit plug–ins for
speed reasons). The Info structures (FilterInfo, FormatInfo, etc.) must be
packed to byte boundaries. The PiMI resource should be byte aligned as
before.

These packing changes are reflected in the appropriate header files using
#pragma pack(1) to set byte packing and #pragma pack() to restore default
packing. These pragmas work only on Microsoft Visual C++ and Windows 32
bit SDK environment tools. If you are using a different compiler, such as
Symantec C++ or Borland C++, you must modify the header files with appro-
priate pragmas. The Borland #pragmas still appear in the header files as they
did in the 16–bit plug–in kit, but are untested.

Resources
The notion of resources is central to the Macintosh, and this carries through
to Photoshop. The 'PiPL' resource (described in chapter 4) introduced with
Photoshop 3.0 and the older 'PiMI’ resource are declared in Macintosh Rez
format in the file PIGeneral.r.

Windows has a similar notion of resources, although they are not the same
as on the Macintosh.

Even under Windows, you are encouraged to create and edit 'PiPL' resources
in the Macintosh format, and then use the CNVTPIPL.EXE utility program to
convert them to Windows .RC resource files. This utility will take care of all
byte ordering issues automatically. If you use a native Windows resource
editor, you must be careful to do the correct byte swapping manually.

Calling a Windows plug–in
You need a DLLInit () function prototyped as

BOOL APIENTRY DLLInit(HANDLE, DWORD, LPVOID);

The actual name of this entry point is provided to the linker by the

Plug-in Basics

Adobe Photoshop Software Development Kit 22

PSDLLENTRY=DLLInit

assignment in the sample makefiles.

The way that messages are packed into wParam and lParam have changed
for Win32. You will need to insure that your window procedures extract the
appropriate information correctly. A new header file “WinUtil.h” defines all
the Win32 message crackers for cross–compilation or you may simply change
your extractions to the Win32 versions. (See The Win32 Application Program-
ming Interface: An Overview for more information on Win32 message
parameter packing.)

Be sure that the definitions for your Windows callback functions (dialog box
functions, etc.) conform to the Win32 model. A common problem is to use of
“WORD wParam” for callback functions. The plug–in examples use

BOOL WINAPI MyDlgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

which will work correctly for both 16 and 32 bit compilation.

Installing plug–in modules
To install a plug–in module, copy the .8B* files into the directory referred to
in the PHOTOSHO.INI file with the profile string PLUGINDIRECTORY.

When Adobe Photoshop starts executing, it searches the files in the PLUGIN-
DIRECTORY, looking for plug–in modules. When it finds a plug–in, it checks
its version number, and if the version is supported, it adds the plug–in’s
name to the appropriate menu or to the list of extensions to be executed.

Each kind of plug–in module has its own 4–byte resource type. For example,
acquisition modules have the code '8BAM' (Note: the actual resource type
must be specified as _8BAM in your resource files to avoid a syntax error
caused by the first character being a number). Adobe Photoshop searches for
acquisition modules by examining the resources of all files in the PLUGINDI-
RECTORY that have file extension .8B*, for resources of type _8BAM. The
nameID, the integer value which uniquely identifies the resource, for each
8BAM in the file must be consecutively numbered starting at 1.

Utility programs and source code
This toolkit includes two groups of utility functions: PIUtilities and WinUtils.

PIUtilities.c and PIUtilities.h contain various routines and macros to make it
easier to use the host callbacks. The macros make assumptions about how
global variables are being handled and declared; refer to the sample source
code to see how PIUtilities are used.

Winutils.c provides support for some Mac Toolbox functions used in PIUtili-
ties.c, including memory management functions (e.g NewHandle(), etc.) The
header file PITypes.h contains definitions for common Mac result codes, data
types, and structures. These simplify writing plug–in modules for both Mac
OS and Windows.

The Windows version of this toolkit also includes two handy utility
programs: MACTODOS.EXE and CNVTPIPL.EXE. These two utilities are
included in the UTILITY sub–directory.

MACTODOS.EXE converts Macintosh text files into PC text files by changing
the line ending characters.

Plug-in Basics

Adobe Photoshop Software Development Kit 23

CNVTPIPL.EXE converts PiPL resources in Macintosh Rez format (ASCII format
which conforms to the PiPL resource template) into the Windows PiPL
format. Refer to chapter 4 for more information about PiPL resources.

To use CNVTPIPL.EXE, you need to pre–process your *.r file using the stan-
dard C pre–processor and pipe the output through CNVTPIPL.EXE. The
sample makefiles illustrate the process.

Example plug–in modules
The four sample plug–ins included with this toolkit can be built using Visual
C++ 2.0 (Two other examples, HistoryExport and IllustratorExport currently
work only under Mac OS.)

3

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

24

Plug–in hosts execute plug–in modules by calling the module’s main entry
point, passing a selector, parameter block, and pointer to the module’s data.

Plug–in modules can make calls back into the plug–in host by means of call-
back function pointers that are provided in the plug–in’s parameter block.
These callbacks provide specific services that your plug–in module may need.
This chapter discusses these callbacks and how to use them.

Callbacks fall into two categories: callback pointers that are hard–coded into
the parameter block structures (direct callbacks), and callbacks that are
accessed through callback suites.

Some of these callback routines are new in Adobe Photoshop 3.0 and may
not be provided by other plug–in hosts, including earlier versions of Photo-
shop. If a host does not provide a particular routine or suite, the relevant
pointer will be null. Photoshop 3.0 has added an error code to indicate that
the host does not supply necessary functionality:

#define errPlugInHostInsufficient -30900

Under Mac OS, callback functions use Pascal calling conventions; Windows
callbacks use C calling conventions. In the following function prototypes, this
is indicated by the macro “MACPASCAL”.

A complete list of callback function declarations can be found in PIGen-
eral.h.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

25

Direct callbacks

These callbacks are found directly in the various plug–in parameter block
structures.

TestAbortProc()

MACPASCAL Boolean (*TestAbortProc) ();

Your plug–in should call this function several times a second during long
operations to allow the user to abort the operation. If the function returns
TRUE, the operations should be aborted. As a side effect, this changes the
cursor to a watch and moves the watch hands periodically.

UpdateProgressProc()

MACPASCAL void (*UpdateProgressProc) (long done, long total);

Your plug–in may call this two–argument procedure periodically to update a
progress indicator. The first parameter is the number of operations
completed; the second is the total number of operations.

This procedure should only be called during the actual main operation of the
plug–in, not during long operations during the preliminary user interface.

Photoshop automatically suppresses display of the progress bar during short
operations.

ProcessEventProc()

MACPASCAL void (*ProcessEventProc) (EventRecord *event);

This callback is only useful under Mac OS; the ProcessEventProc call function
in the Windows version of Adobe Photoshop does nothing.

Adobe Photoshop provides this callback function to allow Macintosh plug–in
modules to pass standard EventRecord pointers to Photoshop. For example,
when a plug–in receives a deactivate event for one of Photoshop’s windows,
it should pass this event on to Photoshop.

This routine can also be used to force Photoshop to update its own windows
by passing relevant update and null events.

DisplayPixelsProc()

MACPASCAL OSErr (*DisplayPixelsProc) (const PSPixelMap *source,
const VRect *srcRect, int32 dstRow, int32 dstCol,

unsigned32 platformContext);

This callback routine is used to display pixels in various image modes. It takes
a structure describing a block of pixels to display.

The routine will do the appropriate color space conversion and copy the
results to the screen with dithering. It will leave the original data intact. If it
is successful, it will return noErr. Non–success is generally due to unsup-
ported color modes.

The

source

 parameter points to a PSPixelMap structure containing the pixels
to be displayed. This structure is documented in appendix A.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

26

The

srcRect

 parameter points to a VRect that indicates the rectangle of the
source pixel map to display.

The

dstRow

 and

dstCol

 parameters provide the coordinates of the top left
destination pixel in the current port (i.e., the destination pixel which will
correspond to the top left pixel in srcRect). The display routines do not scale
the pixels, so specifying the top left corner is sufficient to specify the desti-
nation.

The

platformContext

 parameter is not used under Mac OS since the display
routines simply assume that the target is the current port. On Windows,

plat-
formContext

 should be the target hDC, cast to an unsigned32.

AdvanceStateProc ()

MACPASCAL OSErr (*AdvanceStateProc) (void);

This callback provides a more efficient way for plug–in modules to interact
with a plug–in host. The plug–in module asks the plug–in host to update
(“

advance

 the

state

 of”) the various data structures used for communicating
between the host and the plug–in module.

You can use the AdvanceStateProc callback in situations where you expect
your plug–in module to be called repeatedly during its operation, for
example a scanner import module that scans and delivers images in chunks.
When working with very large images (larger than available RAM), most
plug–in modules must process the image in pieces.

Without the AdvanceStateProc callback, a plug–in module is called from, and
returns to, the plug–in host for each chunk of data. Each repeated call must
go through the plug–in’s main() entry point and through any pre–processing
done by your plug–in module.

Using AdvanceStateProc this overhead is eliminated. Your plug–in can
complete its entire operation within a single call from the plug–in host (not
including any setup interaction with the user, or normal clean–up).

The plug–in host returns noErr if successful and a non–zero error code if
something went wrong. If an error is returned, you should not call
AdvanceStateProc again, but should return the error code to the plug–in
host back through main ().

The precise behavior of this callback varies depending on what type of plug–
in module is executing. Refer to the later chapters on specific plug–in types
for information on how to use this callback.

The AdvanceStateProc callback is new in Adobe Photoshop 3.0.

ColorServicesProc ()

MACPASCAL OSErr (*ColorServicesProc) (ColorServicesInfo *info);

This callback provides your plug–in module access to common color services
within Photoshop. It can be used to perform one of four operations:

(1) choose a color using the Photoshop color picker (actually, using the
user’s preferred color picker),

(2) convert color values from one color space to another,

(3) return the current sample point,

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

27

(4) return either the foreground or background color.

Note:

Versions of Photoshop prior to 3.0.4 contain a bug in the
ColorServicesProc callback to convert a color from one color
space to another. Photoshop 3.0.3 and earlier will return an
error code (paramErr), and convert the requested color to
RGB, regardless of the target conversion requested.

Refer to appendix A for a description of the ColorServicesInfo data structure.

SpaceProc ()

MACPASCAL int32 SpaceProc (void);

This callback examines imageMode, imageSize, depth, and planes and
returns the number of bytes of scratch disk space required to hold the
image. Returns -1 if the values are not valid.

This callback is only available to Acquire plug–in modules.

HostProc ()

MACPASCAL void HostProc(int16 selector, int32 * data);

This callback contains a pointer to a host–defined function that can do
anything the plug–in host wishes. Plug–in modules should verify the host‘s
signature (in the parameter block’s hostSig field) before calling this proce-
dure. This provides a mechanism for hosts to extend the plug–in interface to
support application specific features.

Adobe Photoshop 3.0.4 does not perform any tasks in this callback. Earlier
versions of Photoshop used the HostProc for private communication between
Photoshop and some plug–in modules.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

28

Callback suites

The rest of the callback routines are organized into “suites”, collections of
related routines which implement a particular functionality. The suites are
described by a pointer to a record containing: a 2 byte version number for
the suite, a 2 byte count of the number of routines in the suite, and a series
of function pointers for the callback routines.

Before calling a callback defined in the suite, the plug–in needs to check the
following conditions:

(1) The suite pointer must not be null.

(2) The suite version number must match the version number the plug–in
wishes to use. (Adobe does not expect to change suite version numbers
often.)

(3) The number of routines defined in the suite must be great enough to
include the routine of interest.

(4) The pointer for the routine of interest must not be null.

If these conditions are not met, your plug–in module should put up an error
dialog to alert the user and return a positive result code.

The suites that are currently implemented by Adobe Photoshop 3.0.4 are:

• the buffer suite

• the pseudo–resource suite

• the handle suite

• the image services suite

• the property suite

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

29

Buffer suite

The buffer suite provides an alternative to the memory management func-
tions available in previous versions of Photoshop’s plug–in specification. It
provides a set of routines to request that the host allocate and dispose of
memory out of a pool which it manages.

Photoshop 2.5, for example, goes to a fair amount of trouble to balance the
need for buffers of various sizes against the space needed for the tiles in its
virtual memory system. Growing the space needed for buffers will result in
Photoshop shrinking the number of tiles it keeps in memory.

Previous versions of the plug–in specification provide a simple mechanism
for interacting with Photoshop’s virtual memory system by letting a plug–in
specify a certain amount of memory which the host should reserve for the
plug–in.

This approach has two problems. First, the memory is reserved throughout
the execution of the plug–in. Second, the plug–in may still run up against
limitations imposed by the host. For example, Photoshop 2.5 will, in large
memory configurations, allocate most of memory at startup via a NewPtr
call, and this memory will never be available to the plug–in other than
through the buffer suite. Under Windows, Photoshop’s memory scheme is
designed so that it allocates just enough memory to prevent Windows’
virtual memory manager from kicking in.

If a plug–in module allocates lots of memory using GlobalAlloc (Windows) or
NewPtr (Mac OS), this scheme will be defeated and Photoshop will begin
double–swapping, thereby degrading performance. Using the buffer suite, a
plug–in module can avoid doing some of the accounting for space to be
reserved. This simplifies the prepare phase for acquire, filter, and format
plug–ins.

For most types of plug–in modules, buffer allocations can be delayed until
they are actually needed. Unfortunately, export modules must account for
the buffer for the data requested from the host even though the host allo-
cates the buffer. This means that the buffer suite routines do not provide
much help for export modules.

In Adobe Photoshop 3.0.4, the current version of the buffer suite is 2.

AllocateBufferProc()

MACPASCAL OSErr (*AllocateBufferProc) (int32 size, BufferID *buffer);

Buffers are identified by pointers to an opaque type called BufferID’s.

This routine sets buffer to be the ID for a buffer of the requested size and
returns noErr if allocation is successful. It returns an error code if allocation
is unsuccessful. Note that buffer allocation is more likely to fail during
phases where other blocks of memory are locked down for the plug–in’s
benefit, for example during the continue calls to filter and export plug–ins.

LockBufferProc()

MACPASCAL Ptr (*LockBufferProc) (BufferID buffer, Boolean moveHigh);

This locks the buffer so that it won’t move in memory and returns a pointer
to the beginning of the buffer. Under MacOS, the moveHigh flag indicates

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

30

whether you want the memory blocked moved to the high end of memory to
avoid fragmentation The moveHigh flag has no effect under Windows.

UnlockBufferProc()

MACPASCAL void (*UnlockBufferProc) (BufferID buffer);

This is the corresponding routine to unlock a buffer. Buffer locking uses a
reference counting scheme; a buffer may be locked multiple times and only
the final balancing unlock call will actually unlock it.

FreeBufferProc()

MACPASCAL void (*FreeBufferProc) (BufferID buffer);

This routine releases the storage associated with a buffer. Use of the buffer’s
ID after calling FreeBufferProc will probably result in severe crashes.

BufferSpaceProc()

MACPASCAL int32 (*BufferSpaceProc) (void);

This routine returns the amount of space available for buffers. This space
may be fragmented so an attempt to allocate all of the space as a single
buffer may fail.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

31

Pseudo–Resource suite

This suite of callback routine provides support for storing data with and
retrieving data from a document. These routines provide pseudo–resources
which plug–in modules can attach to documents and use to communicate
with each other.

Each resource is a handle of data and is identified by a 4 character code
(ResType) and a one–based index.

In Adobe Photoshop 3.0.4, the current version of the pseudo–resource suite
is 3.

CountPIResourcesProc()

MACPASCAL int16 (*CountPIResourcesProc) (ResType ofType);

This routine returns a count of the number of resources of a given type.

GetPIResourceProc()

MACPASCAL Handle (*GetPIResourceProc) (ResType ofType, int16 index);

This routine returns the indicated resource for the current document or NULL
if no resource exists with that type and index. The handle returned belongs
to the plug–in host, and should be treated as a read only handle.

DeletePIResourceProc()

MACPASCAL void (*DeletePIResourceProc) (ResType ofType, int16 index);

This routine deletes the resource that would have been returned by GetPIRe-
source. Note that since resources are identified by index rather than ID, this
will cause subsequent resources to be renumbered.

AddPIResourceProc()

MACPASCAL OSErr (*AddPIResourceProc) (ResType ofType, Handle data);

This routine adds a resource of the given type at the end of the list for that
type. The contents of data are duplicated so that the plug–in retains control
over the original handle. If there is not enough memory or the document
already has too many plug–in resources (the limit in Photoshop is 1000
pseudo–resources), this routine will return memFullErr.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit

32

Handle suite

The use of handles in the pseudo–resource suite poses a problem under
Windows, where a direct equivalent does not exist. In this situation, Photo-
shop implements a handle model which is very similar to handles under Mac
OS.

The following suite of routines is used primarily for cross–platform support.
Although you can allocate handles directly using the Macintosh Toolbox, you
should use these callbacks instead. When you use these callbacks, Photoshop
will account for these handles in its virtual memory space calculations.

If your plug–in is intended to run only with Photoshop 3.0 or later, your are
strongly encouraged to use the buffer suite routines for memory allocation
rather than the handle suite. The buffer suite may have access to memory
unavailable to the handle suite. You should use the handle suite, however, if
the data you are managing is in fact a Mac OS handle.

In Adobe Photoshop 3.0.4, the current version number of the handle suite is
1.

NewPIHandleProc ()

MACPASCAL Handle (*NewPIHandleProc) (int32 size);

This routine allocates a handle of the indicated size. It returns NULL if the
handle could not be allocated.

DisposePIHandleProc ()

MACPASCAL void (*DisposePIHandleProc) (Handle h);

This routine disposes of the indicated handle.

GetPIHandleSizeProc ()

MACPASCAL int32 (*GetPIHandleSizeProc) (Handle h);

This routine returns the size of the indicated handle.

SetPIHandleSizeProc ()

MACPASCAL OSErr (*SetPIHandleSizeProc) (Handle h, int32 newSize);

This routine attempts to resize the indicated handle. It returns noErr if
successful and an error code if unsuccessful.

LockPIHandleProc ()

MACPASCAL Ptr (*LockPIHandleProc) (Handle h, Boolean moveHigh);

This routine locks and dereferences the handle. Optionally, the routine will
move the handle to the high end of memory before locking it.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 33

UnlockPIHandleProc ()

MACPASCAL void (*UnlockPIHandleProc) (Handle h);

This routine unlocks the handle. Unlike the routines for buffers, the lock and
unlock calls for handles do not nest. A single unlock call unlocks the handle
no matter how many times it has been locked.

RecoverSpaceProc ()

MACPASCAL void (*RecoverSpaceProc) (int32 size);

All handles allocated through the handle suite have their space accounted
for in Photoshop’s estimates of how much image data it can make resident
at one time.

If you obtain a handle via the handle suite or some other mechanism in
Photoshop, you should dispose of it using the DisposePIHandle callback. If
you dispose of in some other way (e.g., use the handle as the parameter to
AddResource and then close the resource file), then you can use this call to
tell Photoshop to decrease its handle memory pool estimate.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 34

Image services suite

The image services suite is new in version 3.0.4 of Adobe Photoshop. It
provides access to some image procession routines inside Photoshop.
Currently it includes two resampling routines; future versions may provide
access to other functions. Acquire, export, and filter plug–in modules have
access to these callbacks.

These routines are used in the distortion filters that ship with Adobe Photo-
shop 3.0.4.

The current version number of the image services suite is 1.

The PSImagePlane structure describes the 8–bit plane of pixel data used by
the image service callback functions.

typedef struct PSImagePlane
{

void * data;

Rect bounds;

int32 rowBytes;

int32 colBytes;

} PSImagePlane;

To calculate a point’s address, use the following algorithm:

unsigned8 * GetPixelAddress(PSImagePlane * plane, Point pt)
{

// should do some bounds checking here!

return (unsigned8 *) (((long) plane->data +

(pt.v - plane->bounds.top) * plane->rowBytes +

(pt.h - plane->bounds.left) * plane->colBytes);

}

PIResampleProc ()

MACPASCAL OSErr (*PIResampleProc) (PSImagePlane *source,
PIImagePlane *destination,

Rect *area,

Fixed *coords,

int16 method);

The image services suite contains two callbacks with this function type:
interpolate1D and interpolate2D. These are explained in detail below.

The source and destination parameters point to the source and destination
images, respectively. The area parameter points to an area in the destination
image plane that you wish to modify. The area rectangle must be contained
within destination->bounds.

Table 3–1: PSImagePlane structure

Type Field Description

void * data Pointer to the byte containing the value of the top left pixel.

Rect bounds Coordinate systems for the pixels.

int32 rowBytes Step values to access individual pixels.

int32 colBytes

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 35

The coords parameter points to an array you create that controls the image
resampling. The array will contain either one or two fixed point numbers
(see below) for each pixel in the area rectangle.

The method parameter indicates the sampling method to use. Method = 0
indicates point sampling, method = 1 indicates linear interpolation.

For a source coordinate <fv, fh>, Photoshop will write to the destination
plane if and only if:

source->bounds.top <= fv <= source.bounds.bottom - 1

and

source->bounds.left <= fh <= source.bounds.right - 1

If fv and/or fh are not integers, using point sampling (method == 0) Photo-
shop rounds to the nearest integer and using interpolation (method == 1)
performs the appropriate binlinear interpolation using up to four source
pixels.

The two PIResampleProc callback functions differ in how they generate the
sample coordinates for each pixel in the target area.

The interpolate1DProc callback uses a coordinate list that contains one fixed
point value for each pixel in the target plane, in top to bottom, left to right
order. The sample coordinate is formed by taking the vertical coordinate of
the destination pixel and the horizontal coordinate from the list. Thus

SampleLoc1D(v, h) = <v, coords[(h – area–>left) +
(v – area–>top) * (area–>right – area–>left)]>

The interpolate2DProc callback uses a coordinate list that contains a pair of
fixed point values for each pixel in the area containing the vertical and hori-
zontal sample coordinate.

SampleLoc2D(v, h) =
<coords[2*((h – area–>left) +

(v – area–>top) * (area–>right – area–>left))],

 coords[2*((h – area–>left) +

(v – area–>top) * (area–>right – area–>left)) + 1]>

You can build a destination using relatively small input buffers by passing in
a series of input buffers, since these callbacks will leave untouched any
pixels whose sample coordinates are out of bounds. You need, however, to
make sure that you have appropriate overlap between the source buffers so
that sample coordinates don’t “fall through the cracks”. This matters even
when point sampling, since the coordinate test is applied without regard to
the method parameter. (This is done so that you get consistent results when
switching between point sampling and linear interpolation. If Photoshop
didn’t do this, you could end up modifying pixels using point sampling that
wouldn’t get modified when using linear interpolation.)

You also want to pin coordinates to the overall source bounds so that you
will manage to write everything in the destination.

To determine whether you should use point sampling or linear interpolation,
you may want to check what the user has set in their Photoshop preferences
(this is set in the Interpolation pop–up menu on the General Preferences
dialog) and use that choice. You can retrieve this value using the GetProp-
erty callback with the propInterpolationMethod key. Note that this version
of the resampling callback does not support the bicubic interpolation
method.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 36

Property suite

The property suite allows your plug–in module to get and set certain values
in the plug–in host. The property suite is available to all module types.

Note: Unfortunately, the term “property” is used with two quite
different meanings in this toolkit. Besides being used in the
property suite callbacks, the term is also applied to the new
PiPL data structure, documented in chapter 4. There is no
connection between PiPL properties and the property suite.

Properties can consist either of a 32 bit integer returned in simpleProperty,
or a handle returned in complexProperty (see below). In the case of a
complex (i.e. handle based) property, your plug–in module is responsible for
disposing of the handle it is passed using the DisposePIHandleProc callback
defined in the handle suite.

Properties involving strings—such as channel names and path names—are
returned in a Photoshop handle, where the length of the handle (obtained
with PIGetHandleSizeProc) determines the size of the string. There is no
length byte, nor is the string zero terminated.

Properties are identified by a signature and key, which form a pair to iden-
tify the property of interest. Some properties, like channel names and path
names, are also indexed; you must supply the signature, key, and index
(zero–based) to access or update these properties.

Adobe Photoshop’s signature is always 0x3842494D ('8BIM').

In Adobe Photoshop 3.0.4, the current version of the property suite is 1.

GetPropertyProc()

MACPASCAL OSErr (*GetPropertyProc) (OSType signature, OSType key, int32 index,
int32 * simpleProperty, Handle * complexProperty);

The GetPropertyProc callback allows you to get information about the docu-
ment currently being processed.

Note: This callback replaces the direct callback, which has been
renamed “getPropertyObsolete”. The obsolete callback
pointer is still correct, and is maintained for backwards
compatibility.

SetPropertyProc()

MACPASCAL OSErr (*SetPropertyProc) (OSType signature, OSType key, int32 index,
int32 * simpleProperty, Handle * complexProperty);

The SetPropertyProc callback allows you to update information in the plug–
in host about the document currently being processed.

Properties marked “modifiable” in table 3–2 can be altered with this call-
back.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 37

Property keys

Table 3–2 contains the property keys recognized by Adobe Photoshop
version 3.0.4. Refer to the section immediately before this one, which
discusses the property suite callbacks, for information on how to read or
write these key values.

Table 3–2: Property keys

Property
ID
Type

Description

propNumberOfChannels
'nuch'
simple

The number of channels in the document. This count will
include the transparency mask and the layer mask for
the target layer if these are present.

propChannelName
'nmch'
complex (string)

The name of the channel. The channels are indexed from
zero and consist of the composite channels, the trans-
pareny mask, the layer mask, and the alpha channels.

propImageMode
'mode'
simple

The mode of the image using the constants defined in
PIGeneral.

propNumberOfPaths
'nupa'
simple

The number of paths in the document.

propPathName
'nmpa'
complex (string)

The name of the indexed path. The paths are indexed
starting with zero.

propPathContents
'path'
complex (data structure)

The contents of the indexed path in the format docu-
mented in the path resources documentation. The data
is stored in big endian form. Refer to chapter 10 for
more information on path data.

propWorkPathIndex
'wkpa'
simple

The index of the work path or –1 if there is no work
path.

propClippingPathIndex
'clpa'
simple

The index of the clipping path or –1 if there is no clip-
ping path.

propTargetPathIndex
'tgpa'
simple

The index of the target path or –1 if there is no target
path.

propBigNudgeH
'bndH'
simple, modifiable

The horizonal component of the nudge distance, repre-
sented as a 16.16 value. This is the value used when
moving around using the shift key. The default value is
ten pixels.

propBigNudgeV
'bndV'
simple, modifiable

The vertical component of the nudge distance, repre-
sented as a 16.16 value. This is the value used when
moving around using the shift key. The default value is
ten pixels.

propInterpolationMethod
'intp'
simple

The current interpolation method: 1 = point sample, 2 =
bilinear, 3 = bicubic.

propRulerUnits
'rulr'
simple

The current ruler units.

Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 38

propSerialString
'sstr'
complex (string)

The serial number of the plug–in host as a string. You
can use this to implement copy protection for your plug–
in module.

propCaption
'capt'
complex, modifiable

This is the file meta information in a IPTC-NAA record.

propHardwareGammaTable
'hgam'
complex

The hardware gamma table (Windows only).

Table 3–2: Property keys (Continued)

Property
ID
Type

Description

4

PiPL Resources

Adobe Photoshop Software Development Kit

39

A Plug–In Property List, often called a 'PiPL' (pronounced “pipple”) is a flex-
ible, extensible data structure for representing a plug–in module’s metadata.

PiPLs contain all the information Photoshop needs to identify and load plug–
in modules, as well as flags and other static properties that control the oper-
ation of each plug–in. Your plug–in module should contain one or more
‘PiPL’ structures.

Plug–in Property Lists were introduced with version 3.0 of Adobe Photoshop.
They replace the older Plug–in Module Information structure, or 'PiMI'
(pronounced “pimmy”). PiMI resources were used with versions of Photoshop
prior to 3.0, and are discussed in more detail in the next chapter.

Property structures and property lists

Plug–in

property structures

 (or just

properties

) are the basic units of infor-
mation stored in a

property list

. Properties are variable length data struc-
tures, which are uniquely identified by a vendor code, property key, and ID
number. The valid properties are documented later in this chapter.

Appendix B contains a formal grammar for properties.

Creating PiPL resources

Under Mac OS, PiPLs are stored as Macintosh resources. Under Windows,
PiPLs are stored as Windows resources.

On the Macintosh, you can create and edit PiPL resources with a text editor
and the Rez compiler, or you can use a graphical resource editor like Resor-
cerer by Mathemæsthetics, Inc. (Note that ResEdit cannot edit PiPL resources
except as raw hex bytes.) If you are unfamiliar with the format of Rez source
code, refer to the appropriate Apple documentation. This toolkit includes a
Macintosh Rez file, PIGeneral.r, which provides a complete definition of the
PiPL property types.

The Windows version of the toolkit also includes a “PiPL Parser” application
(CNVTPIPL.EXE) to transform a Macintosh “.r” source file into a Windows
“.rc” resource file.

If you are developing for both the Macintosh and Windows platforms, you
can easily convert your Macintosh PiPL resources into Windows’ custom PiPL
format using CNVTPIPL.EXE. This enables you to keep just one copy of your
PiPL information, and saves you the headache of converting PiPLs by hand.

Even if you are developing a plug–in module only for Windows, you are
strongly encouraged to use the Macintosh Rez language to create the PiPLs,
and then use CNVTPIPL.EXE to convert them. It is much easier to create the
PiPLs this way since CNVTPIPL.EXE handles padding and byte–ordering issues
for you automatically. If you use a Windows resource editor, you will have to
remember to byte–swap fields where necessary.

Instructions on using CNVTPIPL.EXE can be found in chapter 2.

PiPL Resources

Adobe Photoshop Software Development Kit

40

Loading PiPL resources

When Photoshop launches, it scans all plug–in files for 'PiPL' resources.
Historically each type of plug–in had its own file type, listed in chapter 2.

File types are only a matter of convention for 'PiPL' based plug–in modules.
All the above file types are searched for 'PiPL' resources and for those that
are found, the information contained therein is used to determine the type
of plug–in, code location, etc.

If no 'PiPL' resources are found in a plug–in file, the 'PiMI' search algorithm
is used as documented in chapter 5. This allows you to place both 'PiPL' and
'PiMI' resources in a plug–in module if it is designed for both version 2.5 and
3.0.x.

Plug–in property lists

The plug–in property list structure has a version number and a count
followed by one or more property structures (defined below).

A “C” struct definition for the plug–in property list is:

typedef struct PIPropertyList
{

int32 version;

int32 count;

PIProperty properties[1];

} PIPropertyList;

Plug–in properties

Each property has a vendor code, a key, an ID, a length field.

typedef struct PIProperty
{

OSType vendorID;

OSType propertyKey;

int32 propertyID;

int32 propertyLength;

char propertyData [1];

/* Implicitly aligned to multiple of 4 bytes. */

} PIProperty;

Table 4–1: PIPropertyList structure

Type Field Description

int32 version This denotes the version of this specification the
'PiPL' is formatted to. The current version is 0.

int32 count This field holds the number of properties con-
tained in the 'PiPL'. 0 is a valid value denoting a
'PiPL' with no properties.

PIProperty array properties A variable length array of variable length prop-
erty data structures. Holds the actual contents of
the 'PiPL'.

PiPL Resources

Adobe Photoshop Software Development Kit

41

Table 4–2: PIProperty structure

Type Field Description

OSType vendorID This field identifies the vendor defining this property
type. This allows other vendors to define their own
properties in a way that does not conflict with either
Adobe or other vendors. It is recommended that a reg-
istered application creator code be used for the ven-
dorID to ensure uniqueness. All Photoshop properties
described in this document use the vendorID '8BIM'.

OSType propertyKey This field specifies the type of this property. Property
types used by Photoshop are documented below. (You
can think of a property type as similar to a resource
type.)

int32 propertyID In theory, the propertyID field can be used to store
more than one property of a given type (similar to a
resource ID). In practice, this field is always zero. It
should be thought of as reserved for future use.

int32 propertyLength This field contains the length of the

propertyData

field. It does not include any padding bytes after
propertyData to achieve four byte alignment.

Proper-
tyLength

 may be zero.

variable propertyData This field contains the property’s data. In the property
list, each property must be padded so that the next
property begins on a four byte boundary.

PiPL Resources

Adobe Photoshop Software Development Kit

42

General properties

These properties are common to all types of plug–in modules. The names of
the properties (such as “PIKindProperty”) are the same as the #define names
for the corresponding property keys.

PIKindProperty

Property Key: 0x6b696e64L ('kind')

Property Data: OSType

This property encodes the type or kind of a plug–in module. In Photoshop,
this determines where the plug–in will appear in the menus. Valid values
are: shown in table 5–3.

PIVersionProperty

Property Key: 0x76657273L ('vers')

Property Data: int32

This property encodes a major and minor version number indicating which
revision of the plug–in interface this plug–in was written for. The major
version number indicates incompatible changes while the minor version
number indicates incremental enhancements. The major version number is
encoded in the most significant 16 bits of the 32 bit version number, the
minor version number is encoded in the least significant 16 bits.

There are separate version numbers for each kind of plug–in. The current
version for a given kind of plug–in is defined by a preprocessor macro in the
header file defining the interface for that plug–in type.

PIPriorityProperty

Property Key: 0x70727479L ('prty')

Property Data: int16

This property determines the order in which this plug–in will be loaded. This
is typically only important for hardware accelerator plug–in modules.

PIPriorityProperty can be used in format modules to determine the priority
of multiple modules that can read a particular file format. See chapter 9 for
details. This property can also be used to control the order in which items
with the same name show up in menus.

Lower numbers (including negative ones since the field is signed) load first.
If no PIPriorityProperty is present, the default is zero.

Table 4–3: PIKindProperty

Module Type PIKindProperty

Acquire '8BAM'

Export '8BEM'

Format '8BIF'

Filter '8BFM'

Parser '8BYM'

Accelerator Extension '8BXM'

PiPL Resources

Adobe Photoshop Software Development Kit

43

PIImageModesProperty

Property Key: 0x6d6f6465L ('mode')

Property Data: FlagSet

This is a set of flags that determines which image modes the plug–in
supports. In Adobe Photoshop, eleven modes are defined: bitmap, gray scale,
indexed color, RGB color, CMYK color, HSL color, HSB color, multi–channel,
duotone, Lab color, gray 16 color, and RGB 48 color.

PIRequiredHostProperty

Property Key: 0x686f7374L ('host')

Property Data: OSType

This property should be used if a plug–in relies on features of a specific host.
It is typically filled in with the applications creator code. (E.g. '8BIM' for
Adobe Photoshop.)

PICategoryProperty

Property Key: 0x63617467L ('catg')

Property Data: PString

If present, this property indicates what sub–menu to list this plug–in module
under. For example, Adobe Photoshop filter plug–ins are often grouped
under “Noise”, “Blur”, “Stylize”, etc. sub–menus under the Filter menu.

PINameProperty

Property Key: 0x6e616d65L ('name')

Property Data: PString

This property indicates the name that the plug–in host should use on the
menu for this plug–in module. Where a plug–in modules appears in the
plug–in host’s menu hierarchy depends on the type of the plug–in module
and the PICategoryProperty field.

PiPL Resources

Adobe Photoshop Software Development Kit

44

Code descriptor properties

Code descriptors tell Photoshop the type and location of a plug–in’s code.
More than one code descriptor may be included to build a “fat” plug–in
which will run on different types of machines. Photoshop will select the best
performing option. Photoshop makes sure that the callback structure is filled
in with appropriate functions for the type of code that is loaded. So for
PowerPC code, native function pointers will be provided and routine
descriptor operations are not required either in calling the plug–in or for the
plug–in to invoke Photoshop callback functions.

Note for Windows Developers: The CNVTPIPL.EXE utility only recognizes the
“PIWin32X86CodeProperty” property. It ignores all Mac–specific properties
described in this section.

PI68KCodeProperty

Property Key: 0x6d36386bL ('m68k')

Property Data: PI68KCodeDesc structure

This property indicates a 68K code resource. The PI68KCodeDesc structure is:

typedef struct PI68KCodeDesc
{

 OSType resourceType;

 int16 resourceID;

} PI68KCodeDesc;

Any resource type may be used, but you are strongly encouraged to use the
same type as the PIKindProperty, shown in table 5–3.

This convention comes from Photoshop 2.5.1 where these types were
required. When building a plug–in module that is backwards compatible
with 2.5.1 hosts, your must use these resource types.

PI68KFPUCodeProperty

Property Key: 0x36386670L ('68fp')

Property Data: PI68KCodeDesc structure

This descriptor is just like a PI68KCodeDesc except it will only be used on
Macintosh machines that are equipped with FPU hardware. This allows
vendors to easily ship plug–ins that take advantage of FPU hardware but still
run on non–FPU Macs.

PIPowerPCCodeProperty

Property Key: 0x70777063L ('pwpc')

Property Data: PICFMCodeDesc

This descriptor indicates a PowerPC code fragment in the data fork of the
plug–in file. The type for this property is as follows:

typedef struct PICFMCodeDesc
{

long fContainerOffset;

long fContainerLength;

char fEntryName[1];

} PICFMCodeDesc;

PiPL Resources

Adobe Photoshop Software Development Kit

45

Entrypoint names allow more than one plug–in to be exported from a single
code fragment.

Note: in order for the Code Fragment Manager to find an entrypoint by
name, that name must be an exported symbol of the code fragment.

PIWin32X86CodeProperty

Property Key: 0x77783836L ('wx86')

Property Data: PIWin32X86CodeDesc (NULL terminated string)

This code descriptor is used for 32 bit Windows DLLs, and contains the DLL’s
entrypoint name.

typedef struct PIWin32X86CodeDesc
{

char fEntryName[1];

} PIWin32X86CodeDesc;

The string may need to be padded with additional NULLs to satisfy the 4
byte alignment requirement.

Table 4–4: PICFMCodeDesc structure

Type Field Description

long fContainerOffset This field contains the offset within the data fork for
the start of this plug–in’s code fragment. This allows
more than one code fragment based plug–in per file.

long fContainerLength This field holds the length of this plug–ins code frag-
ment. If the fragment extends to the end of the file
(e.g. it is the only fragment in the file), the container
length may be 0.

Pstring fEntryName This field is represented as a Pascal string and is used
to lookup the address of the function to call within
the fragment. If the entrypoint name is a zero length
string, the default entrypoint for the code fragment
will be used.

PiPL Resources

Adobe Photoshop Software Development Kit

46

Export–specific properties

This property is only applicable to export plug–in modules.

PIExpFlagsProperty

Property Key: 0x65787066L ('expf')

Property Data: FlagSet

This property indicates that the acquire plug–in module can see transparency
data. To indicate this, set the flag:

#define PIExpSupportsTransparency 0

PiPL Resources

Adobe Photoshop Software Development Kit

47

Filter–specific properties

These properties are only applicable to filter plug–in modules.

PIFilterCaseInfoProperty

Property Key: 0x66696369L ('fici')

Property Data: Array of seven bytes

The key feature of Photoshop 3.0 is support for dynamically composited
layers of image data.

A layer consists of color and transparency information for each pixel it
contains. Previous versions of Photoshop did not have a transparency compo-
nent. Transparency introduces a greater richness as well as a number of
interesting problems. First, completely transparent pixels have an undefined
color. Second, filters will likely affect transparency data as well as color data.
This is especially true for filters which produce spatial distortions.

Photoshop 3.0 offers flexibility in how transparency data is presented to
filters. The filter case info property controls the filtering process and presen-
tation of data to the plug–in. This property provides information to Photo-
shop about what image data cases the plug–in supports. Photoshop then
compares the current filtering situation to the supported cases and chooses
the best fitting case. The image data is then presented in that case. If none
of the supported cases are usable, the filter will be disabled.

The case properties are an array of seven four byte entries, one for each
case.

The seven cases are shown in table 5–5. (These #define constants are passed
to a filter plug–in module in the

filterCase

 field. Note that the case array is
one–indexed.)

Adobe Photoshop follows an algorithm to determine whether a particular
case is supported. If the editable transparency cases are unsupported, then
Photoshop will try the corresponding protected transparency cases. This is
important because this governs whether the filter will be expected to filter
the transparency data as well as the color data.

Table 4–5: Filter cases

#define name Description

filterCaseFlatImageNoSelection (1) This is a background layer or a flat
image. There is no transparency
data or selection.

filterCaseFlatImageWithSelection (2) No transparency data, but a selec-
tion may be present. The selection
will be presented as mask data.

filterCaseFloatingSelection (3) Image data with an accompanying
mask.

filterCaseEditableTransparencyNoSelection (4) A layer with transparency editing
enabled and no selection.

filterCaseEditableTransparencyWithSelection (5) A layer with transparency editing
enabled and a selection.

filterCaseProtectedTransparencyNoSelection (6) A layer with transparency editing
disabled and no selection.

filterCaseProtectedTransparencyWithSelection (7) A layer with transparency editing
disabled and a selection.

PiPL Resources

Adobe Photoshop Software Development Kit

48

If the protected transparency case without a selection is disabled, Photoshop
will fall through from there to treating the layer data as a floating selection.
As such, the transparency data will be presented via the mask portion of the
interface rather than with the input data.

Each of the seven elements of the array contains a four byte FilterCaseInfo
structure.

typedef struct FilterCaseInfo
{

char inputHandling;

char outputHandling;

char flags1;

char flags2;

} FilterCaseInfo;

The

inputHandling

 and

outputHandling

 fields specify the pre–processing and
post–processing actions on the image data respectively.

Table 4–6: Handling modes

Handling mode Description

filterDataHandlingCantFilter (0) indicates that this case is not supported by the
plug–in filter

filterDataHandlingNone (1) indicates that the plug–in filter does not expect
the plug–in host to do anything to the image
data.

The next three modes are matting cases, which are useful when performing spatial distor-
tions and blurs.

You can matte the data, process it, and then dematte to remove the added color.

For these cases, the matting is defined as follows:

mattedValue = ((unmattedValue * transparency) + 128) / 255 +

 ((matConstant * (255 - transparency)) + 128) / 255

Dematting is defined as follows:

unmattedValue = ((mattedValue - matConstant) ./ transparency) + matConstant

with the ./ operator defined to be a suitable 8 bit fixed–point divide and the result value
being pinned to the range of 0 to 255.

filterDataHandlingBlackMat (2) For the input case, matte the image data with
black (0) values based on the transparency. For
output, dematte the image data using black (0)
values.

filterDataHandlingGrayMat (3) Matte the image data with gray (128) values
based on the transparency on input. Dematte
the image data using gray (128) values on out-
put.

filterDataHandlingWhiteMat (4) Matte the image data with white (255) values
based on the transparency on input. Dematte
the image data using white (255) values on out-
put.

The following modes are only useful for input:

filterDataHandlingDefringe (5) Defringe transparent areas filling with the near-
est defined pixels using taxicab distance. Note
that this only applies to fully transparent pixels.

filterDataHandlingBlackZap (6) Set color component of totally transparent pix-
els to black (0).

filterDataHandlingGrayZap (7) Set color component of totally transparent pix-
els to gray (128).

filterDataHandlingWhiteZap (8) Set color component of totally transparent pix-
els to white (255).

PiPL Resources

Adobe Photoshop Software Development Kit

49

The

flags1

 field of the FilterCaseInfo structure holds the following bits:

Note:

This field is not a FlagSet. The first bit (PIFilterDontCopyToDestina-
tionBit) is in the least–significant bit of the flag byte.

#define PIFilterDontCopyToDestinationBit 0

Normally Photoshop copies the source data to the destination before
filtering. This gives a good default value for any pixels the filter does not
write too, but degrades performance for filters which write all the output
pixels. Setting this bit inhibits the copying behavior.

#define PIFilterWorksWithBlankDataBit 1

This flag determines whether the filter will work on “blank” areas. That is,
areas that are completely transparent. If not, an error message will be given
when the filter is invoked on a blank area. This is only valid for the editable
transparency case because that is the only case where you could create
opacity—in the protected transparency case, you would be left with what
you started with: completely blank data.

#define PIFilterFiltersLayerMaskBit 2

In cases where transparency is editable, this flag determines if Layer Masks
are filtered. (See the “Add Layer Mask” item in the Layers palette menu to
create a layer mask.) Setting this bit adds the layer mask to the set of target
channels if: transparency for the layer is editable (i.e., this is one of the edit-
able transparency cases), the bit is set, and the layer mask is specified as
being positioned relative to the layer rather than the image in Layer Mask
Options. This is the same logic Photoshop uses for built–in filters like blur.
The distinction based on position is made with the assumption that layer
relative masks will need to be distorted along with the layer while image
relative masks are independent of the layer.

The

flags2

 field of the FilterCaseInfo structure is reserved, and should be
zero.

filterDataHandlingBackgroundZap (10) Set color component of totally transparent pix-
els to the current background color.

filterDataHandlingForegroundZap (11) Set color component of totally transparent pix-
els to the current foreground color.

The following mode is only useful for output:

filterDataHandlingFillMask (9) This mode results in the transparency mask
automatically being filled with full opacity in
the area affected by the filter. This is only valid
for the editable transparency cases. This option
is provided to make it easy to write a plug–in
similar to Photoshop’s Clouds plug–in, which fills
an area with a value.

Table 4–6: Handling modes (Continued)

Handling mode Description

PiPL Resources

Adobe Photoshop Software Development Kit 50

Format–specific properties

These properties are only applicable to format plug–in modules.

PIFmtFileTypeProperty

Property Key: 0x666d5443L ('fmTC')

Property Data: TypeCreatorPair

Determines the default type and creator code used for files newly created
with this format plug–in.

Under Windows, files don’t store TypeCreator information, except internally,
so the PIFmtFileTypeProperty is not required; they are always interpreted as
of type 'BINA' and creator 'mdos'.

All the info regarding what files can be read and written is obtained from
the PIReadExtProperty or the PIFilteredExtProperty.

Under Windows, PiMI extensions are converted to PIReadExtPropertys, so use
of PIFilteredExtProperty requires additional coding if you are porting a 16–
bit plug–in format module to 32–bit.

PIReadTypesProperty

Property Key: 0x52645479L ('RdTy')

Property Data: Array of TypeCreatorPairs

This property contains a list of type and creator pairs which the format plug–
in can read. Specifying a value of four spaces (0x20202020L) matches any
type or creator.

PIFilteredTypesProperty

Property Key: 0x66667454L ('fftT')

Property Data: Array of TypeCreatorPairs

This property contains a list of type and creator pairs for which the file
format plug–in should be called to determine if the file can be read. Speci-
fying a value of four spaces (0x20202020L) matches any type or creator.

PIReadExtProperty

Property Key: 0x52644578L ('RdEx')

Property Data: Array of OSTypes

This property contains a list of extensions which the format plug–in can
read. The extension is stored in the first three characters of the OSType. The
fourth character must be a space.

PIFilteredExtProperty

Property Key: 0x66667445L ('fftE')

Property Data: Array of OSTypes

This property contains a list of extensions for which the file format plug–in
should be called to determine if the file can be read. See documentation for
formatSelectorFilterFile plug–in selector.

PiPL Resources

Adobe Photoshop Software Development Kit 51

PIFmtFlagsProperty

Property Key: 0x666d7466L ('fmtf')

Property Data: FlagSet

This property contains a set of flags which control the operation of file
format plug–ins. The default value for any flag is false.

The bit fields of the flag are as follows:

#define PIFmtReadsAllTypesFlag 0

This field is obsolete.

#define PIFmtSavesImageResourcesFlag 1

Along with the pixel information for a file, Photoshop stores various image
resources: printing information, pen tool paths, etc.. Collectively, these are
known as image resources. The plug–in format has the option of taking
responsibility for these resources by reading and writing a block of data
containing the image resources. If this flag is false, Photoshop will add the
image resources to the file’s resource fork (Mac OS) but this will not be
portable to other platforms.

#define PIFmtCanReadFlag 2

This flag should be set to true if the file format can read files.

#define PIFmtCanWriteFlag 3

This flag should be set to true if the file format can write files.

#define PIFmtCanWriteIfReadFlag 4

Flag indicating whether your plug–in can write the file if the plug–in origi-
nally read the file. For example, the plug–in to support Adobe Premiere’s
Filmstrip format has the can write flag set to false because it cannot in
general be used to save files. It has this flag set to true, however, because it
can save out filmstrips that were read in using the plug–in.

PIFmtMaxSizeProperty

Property Key: 0x6d78737aL ('mxsz')

Property Data: Point

The maximum number of rows and columns that can be in an image saved in
this format. Photoshop will use this field to screen out ineligible formats.

PIFmtMaxChannelsProperty

Property Key: 0x6d786368L ('mxch')

Property Data: Array of int16s

An array of counts of the maximum number of channels which can/will be
saved for a given image mode.

This array is indexed by the plug–in mode constants. For example, if your
format plug–in supports a single alpha channel in RGB mode, you should set
maxChannels[plugInModeRGBColor] to four.

A plug–in may still be asked to save more channels than it reports it can
support. This field exists primarily so that Photoshop can warn the user that
alpha channels will be discarded.

PiPL Resources

Adobe Photoshop Software Development Kit 52

5

PiMI Resources

Adobe Photoshop Software Development Kit

53

PiMI (pronounced “pimmy”) resources have been superceded by PiPL
resources, but you may need to include a PiMI resource if your want your
plug–in module to work with older (pre–3.0) versions of Adobe Photoshop.
Adobe recommends that you also create a PiPL resource for your plug–in, as
this will give you greater control over its operation under 3.0.

If your plug–in module is designed to be used only with Photoshop 3.0 or
later, you should not create a PiMI resource, and can skip this chapter.

Older PiMI based plug–in modules are still fully supported in Photoshop 3.0.
This is accomplished by converting the 'PiMI' resource into a 'PiPL' resource
when the plug–in is first scanned. Since 'PiPL's are cached in Photoshop’s
preferences file, this conversion only happens once.

If you want your plug–in to work with versions of Photoshop prior to 3.0,
you must create a PiMI resource.

A PiMI resource is a fixed format structure which originally contained only a
version number. With the evolution of Photoshop’s plug–in interface, this
structure expanded to include other information. The addition of multiple
plug–in types resulted in the PiMI becoming a variant record with generic
data at the beginning and a type specific data at the end. Further plug–in
interface evolution required more complex metadata, such as an array of
allowable file types for file format plug–ins.The combination of variant and
variable sized fields in the 'PiMI' made writing resource templates for them
very difficult. Requirements for new plug–in metadata in Photoshop 3.0
introduced further complexities. The more general and flexible 'PiPL' mecha-
nism was designed to address these issues.

The PiMI resource consists of two pieces: general information applicable to
all (or most) plug–in types followed by type specific info. Since the informa-
tion proceeds serially, however, all fields must be filled in through and
including the last field supplied. Your plug–in should either just include the
version number information, or it should include all of the information
documented here.

A “C” struct definition for the PiMI resource is:

typedef struct PlugInInfo
{

short version;

short subVersion

short priority;

short generalInfoSize;

short typeInfoSize;

short supportsMode;

OSType requireHost;

} PlugInInfo;

PiMI Resources

Adobe Photoshop Software Development Kit

54

Table 5–1: PlugInInfo (PiMI) structure

Type Field Description

short version The major version number for the interface used by the
plug–in. This field is required.

short subVersion The minor version number for the interface used by the
plug–in. This field is required.

short priority The priority which should be associated with this plug–
in when it loads. Currently, this is only used for exten-
sion modules.

short generalInfoSize The size of the general plug–in information in this
resource.

short typeInfoSize The size of the type–specific plug–in information in this
resource. This information follows the requiredHost
field. The type specific info is documented in the chap-
ters for the various types of plug–ins.

short supportsMode A bitmap describing the image modes supported by the
plug–in. This field applies to filter, export, and file for-
mat plug–ins. If it is not present, Photoshop will assume
that the plug–in supports all image modes. This field is
one of the ways Photoshop decides whether to dim
plug–ins in menus.

Since not all plug–in hosts may respect this field, your
plug–in module should still check that it can handle the
image mode it has been requested to process. The bits
in the bitmap correspond to the plugInMode constants
in PIGeneral.h (i.e. bit 0 corresponds to bitmaps, bit 1 to
grayscale, etc.).

short requireHost If your plug–in requires a particular plug–in host, you
should specify the signature for that host here. If you
do not require a particular plug–in host, you should fill
this field with spaces.

Photoshop will not load plug–in modules which require
a plug–in host other than Photoshop’s '8BIM' signature.
You should not count on other applications that sup-
port the Photoshop plug–in architecture to behave in a
similar fashion.

6

Acquire Modules

Adobe Photoshop Software Development Kit

55

Acquire plug–in modules are used to capture images from add–on hardware,
such as scanners or video cameras, and put these images into new Photoshop
document windows.

Acquire modules can also be used to read images from unsupported file
formats, although file format modules often are better suited for this
purpose (file format modules are accessed directly from the Open...
command, while acquire modules use the Acquire sub–menu.)

Under Mac OS, the code resource and file type for acquire modules is
'8BAM'. Under Windows, the file extension is .8BA.

Sample plug–in

DummyScan is a sample acquire module. This is a new version of DummyScan
which is Photoshop 3.0 specific, since it uses the advanceState callback and
the improved multiple acquire design.

Acquire Modules

Adobe Photoshop Software Development Kit

56

Calling sequence

The calling sequence for acquire modules is a little more complex than other
types of plug–in modules. In a single invocation, acquire modules may be
capable of capturing multiple images and creating multiple new Photoshop
document windows. Because captured images may be large, each capture
may require multiple exchanges between the host and the module.

When the user invokes an acquire plug–in module by selecting its name from
the Acquire submenu, Photoshop calls it with the sequence of selector values
shown in the figure above. The actions for these selectors is discussed next.

acquireSelectorPrepare

The acquireSelectorReadPrepare selector calls allow your plug–in module to
adjust Photoshop’s memory allocation algorithm. Photoshop sets

maxData

 to
the maximum number of bytes it can allocate to your plug–in. For acquire
modules to perform efficiently, you should reduce

maxData

 to permit Photo-
shop to process the acquired image in RAM. Refer to chapter 3 for details on
memory management strategies.

*

Acquire

Command

acquireSelectorFinalize

acquireSelectorContinue

acquireSelectorPrepare

Loop for next image.

See notes below.

Calculate memory require-
ments.

May display user interface for
multiple acquisition.

acquireSelectorStart

May display user interface for
single acquisition.

Configure new image’s size/
depth information.

Acquire and return a portion
of an image.

Loop until error
or data == NULL.

acquireSelectorFinish

Clean up after end of image
acquisition.

Indicate to host whether to
acquire another image.

Perform any final cleanup
needed.

Done.

Adobe Photoshop™ 3.0.4 Acme Scanner Plug–in

If supported by host and requested by plug-in.

*

Acquire Modules

Adobe Photoshop Software Development Kit

57

acquireSelectorStart

This call lets you indicate to the plug–in host the mode, size and resolution
of the image being returned, so it can allocate and initialize its data struc-
tures. Most plug–ins will display their dialog box, if any, during this call.

During this call, your plug–in module should set

imageMode, imageSize,
depth, planes, imageHRes

 and

imageVRes

. If an indexed color image is being
returned, you should also set

redLUT, greenLUT

 and

blueLUT

. If a duotone
mode image is being returned, you should also set

duotoneInfo

. See the
descriptions of these fields later in this chapter.

acquireSelectorContinue

This call returns an area of the image to the plug–in host. Photoshop will
continue to call this routine until it either returns an error, or your plug–in
module sets the

data

 field to

NULL

.

The area of the image being returned is specified by

theRect

 and by

loPlane

and

hiPlane

. The

data

 field should point to the actual data being returned.
The fields

colBytes, rowBytes

 and

planeBytes

 specify the organization of the
data.

Photoshop is very flexible in the format in which image data can be
returned. For example, to return just the red plane of an RGB color image,

loPlane

 and the

hiPlane

 should be set to 0,

colBytes

 should be set to 1, and

rowBytes

 should be set to the width of the area being returned (

planeBytes

is ignored in this case, since

loPlane

 ==

hiPlane

).

If instead, you wish to return the RGB data in interleaved form (RGBRGB...),
the

loPlane

 should be set to 0,

hiPlane

 to 2,

planeBytes

 to 1,

colBytes

 to 3,
and

rowBytes

 to 3 times the width of area being returned.

The portion of the image being returned is specified by

theRect

. If the reso-
lution of the acquired image is always going to be very small (for example,
NTSC frame grabbers), your plug–in can simply set

theRect

 to the entire
image area. However, if you are working with large images, your plug–in
must use the

theRect

 field to return the image in several pieces.

There are no restrictions on how the pieces tile the image; horizontal and
vertical strips are allowed as are a grid of tiles. Each piece should contain no
more than

maxData

 bytes (less the size of any large tables or scratch areas
allocated by the plug–in) unless the buffer for the image data was allocated
using the buffer or handle suites.

The

data

 field contains a pointer to the data being returned. Most plug–ins
will allocate a buffer for the data using the NewPtr trap (Mac OS), GlobalA-
lloc function (Windows) or via the buffer suite. Your plug–in module is
responsible for freeing this buffer in its acquireSelectorFinish handler.

acquireSelectorFinish

This call allows your plug–in to clean up after an image acquisition. This call
is made if and only if the acquireSelectorStart routine returns without error,
even if the acquireSelectorContinue routine returns an error.

Most plug–ins will at least need to free the buffer used to return the image
data.

Acquire Modules

Adobe Photoshop Software Development Kit

58

If Photoshop detects Command–period (Mac OS) or Escape (Windows) while
processing the results of an acquireSelectorContinue call, it will call the
acquireSelectorFinish routine. Be careful here, since normally your plug–in
would be expecting another acquireSelectorContinue call.

If the following conditions are true:

(a) the plug–in host supports multiple acquisitions (which Photoshop 3.0
does)

(b) your plug–in module set

acquireAgain

 =

TRUE

, and

(c) the acquireSelectorContinue loop finished normally (no error was
returned, the loop ended with

data

 ==

NULL

),

then the plug–in host can loop back to acquireSelectorStart to begin
acquiring another image.

Alternately, if the following conditions are true:

(a) the plug–in host supports multiple acquisitions,

(b) the plug–in host set

canFinalize

 =

TRUE

,

(c) your plug–in module set

wantFinalize

 =

TRUE

 and

acquireAgain

 =

TRUE

,
and

(d) the acquireSelectorContinue loop finished with a result code >= 0 or a
result code of userCanceledErr,

then the plug–in host can loop back to acquireSelectorStart to begin
acquiring another image.

acquireSelectorFinalize

If your plug–in is using finalization—the host set

canFinalize

 and your plug–
in set

wantFinalize

—then this call will be made after all possible looping is
complete. This can be used to do any final clean–up, and is typically used in
the case where a plug–in module is acquiring multiple images during a single
invocation.

Notes:

1. If acquireSelectorPrepare succeeds—the result value is zero—and

want-
Finalize

 is

TRUE

, then Photoshop guarantees that acquireSelectorFi-
nalize will be called.

2. If acquireSelectorStart succeeds then Photoshop guarantees that
acquireSelectorFinish will be called.

3. In the event of any error during acquisition, the document being
acquired is discarded.

4. Plug–in hosts may choose to just treat acquireAgain as

FALSE

.

5. Your plug–in module can tell whether the host understands finaliza-
tion by checking the

canFinalize

 flag.

6. The

advanceState

 callback allows your plug–in module to drive the
interaction through the inner (acquireSelectorContinue) loop without
actually returning to the plug–in host. If the host returns an error, then
you should treat this as an error condition and return the error code
when returning from your acquireSelectorContinue handler.

Acquire Modules

Adobe Photoshop Software Development Kit

59

Error return values

The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer.

#define acquireBadParameters -30000 // an error with the interface
#define acquireNoScanner –30001 // no scanner installed

#define acquireScannerProblem –30002 // a problem with the scanner

Acquire Modules

Adobe Photoshop Software Development Kit

60

The Acquire parameter block

The pluginParameterBlock parameter passed to your plug–in module’s entry
point contains a pointer to an AcquireRecord structure with the following
fields. This structure is declared in PIAcquire.h.

Table 6–1: AcquireRecord fields

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Your plug–in module can use this
value for copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the TestAbort
callback documented in chapter 3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback documented in chap-
ter 3. You should only call this during the
actual main operation of the plug–in, not
during long operations during the preliminary
user interface. For example, it should not be
used during a preview operation that com-
putes a low resolution preview image for
cropping. It should be used during the main,
high–resolution scan.

int32 maxData Photoshop initializes this field to the maxi-
mum of number of bytes it can free up. Your
plug–in may reduce this value during the
acquireSelectorPrepare routine. The acquire-
SelectorContinue routine should return the
image in strips no larger than maxData, less
the size of any large tables or scratch areas it
has allocated unless it uses the buffer or han-
dle suites to allocate the memory.

int16 imageMode Your acquireSelectorStart handler should set
this field to inform the plug–in host what
mode image is being acquired (grayscale, RGB
Color, etc.). See PIGeneral.h for valid image
mode constants.

Point imageSize Your acquireSelectorStart handler should set
this field to inform the plug–in host of the
image’s width (imageSize.h) and height
(imageSize.v) in pixels.

int16 depth Your acquireSelectorStart handler should set
this field to inform the plug–in host of the
image’s resolution in bits per pixel per plane.
The only valid values are 1 for bitmap mode
images, and 8 for all other modes, except
grayscale and RGB which also allow 16.

int16 planes Your acquireSelectorStart handler should set
this field to inform the plug–in host of the
number of channels in the image. For exam-
ple, if an RGB image without alpha channels
is being returned, this field should be set to 3.
Because of the implementation of the plane
map, acquire modules (and format modules)
should never try to work with more than 16
planes at a time, even though acquire mod-
ules can create documents with up to 24
channels.

Acquire Modules

Adobe Photoshop Software Development Kit 61

Fixed imageHRes Your acquireSelectorStart handler should set
these fields to inform the plug–in host of the
image’s horizontal and vertical resolution in
terms of pixels per inch. This is a fixed point
number (16 binary digits). Photoshop initial-
izes these fields to 72 pixels per inch.

The current version of Photoshop only sup-
ports square pixels, so it ignores the imageV-
Res field. Plug–ins should set both fields
anyway in case future versions of Photoshop
support non–square pixels.

Fixed imageVRes

LookUpTable redLUT If an indexed color mode image is being
returned, your acquireSelectorStart handler
should return the image’s color table in these
fields.

LookUpTable greenLUT

LookUpTable blueLUT

void * data Your acquireSelectorContinue handler should
return a pointer to the image’s data in this
field. After all of the image has been
returned, set this pointer to NULL.

Note that your plug–in is responsible for free-
ing any memory pointed to by this field. For
acquire plug–in modules, this is a change
from previous versions of Photoshop’s plug–in
interface.

Rect theRect Your acquireSelectorContinue handler should
set this field to the area being returned.

int16 loPlane Your acquireSelectorContinue handler should
set these fields to the first and last planes
being returned. For example, if interleaved
RGB data is being returned, they should be
set to 0 and 2, respectively.

int16 hiPlane

int16 colBytes Your acquireSelectorContinue handler should
set this field to the offset in bytes between
columns of returned data. This is usually 1 for
non–interleaved data, or (hiPlane – loPlane +
1) for interleaved data.

int32 rowBytes Your acquireSelectorContinue handler should
set this field to the offset in bytes between
rows of returned data.

int32 planeBytes Your acquireSelectorContinue handler should
set this field to the offset in bytes between
planes of returned data. This field is ignored
if loPlane == hiPlane. It should be set to 1 for
interleaved data.

Str255 fileName By default, Photoshop opens newly acquired
images as “Untitled–...” . File importing
acquire modules should set this field to the
file’s name in their acquireSelectorStart rou-
tines, so Photoshop can display the correct
window title. Scanning modules should
ignore this field.

int16 vRefNum If your plug–in module sets fileName, you
should also set vRefNum to the file’s volume
reference number. This is only applicable
under Mac OS, it is ignored under Windows.

Boolean dirty By default, newly acquired images are marked
as dirty, meaning that the user will be
prompted to save the image when closing the
window. File importing acquire modules
should set this field to FALSE to prevent this.

Table 6–1: AcquireRecord fields (Continued)

Type Field Description

Acquire Modules

Adobe Photoshop Software Development Kit 62

OSType hostSig The plug–in host provides its signature to
your plug–in module in this field. Photoshop’s
signature is '8BIM'.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should ver-
ify hostSig before calling this procedure. This
provides a mechanism for hosts to extend the
plug–in interface to support application spe-
cific features.

int32 hostModes This field is used by the host to inform your
plug–in module which imageMode values it
supports. If the corresponding bit (LSB = bit 0)
is 1, the mode is supported. This field can be
used by plug–ins to disable features (such as
color scanning) if not supported by the host.

PlaneMap planeMap This is initialized by the plug–in host to a lin-
ear map (planeMap [i] = i). This is used to
map plane (channel) numbers between the
plug–in and the host. For example, Photoshop
stores RGB images with an alpha channel in
the order RGBA, whereas most frame buffers
store the data in ARGB order. To return the
data in this order, set planeMap [0] = 3,
planeMap [1] = 0, planeMap [2] = 1, and
planeMap [3] = 2. Note that attempts to index
past the end of a planeMap will result in the
identity map being used for the indexing.

Boolean canTranspose If the host supports transposing images dur-
ing or after scanning, it sets this field to TRUE.
Photoshop always sets this field to TRUE.

Boolean needTranspose This field is initialized by the host to FALSE. If
your plug–in wishes to have the image trans-
posed, and canTranspose is TRUE, you should
set this field to TRUE in your acquireSelector-
Start handler.

The logical effect is to transpose the image
after scanning is complete, although some
hosts may find it more efficient to transpose
the data during scanning.

This feature was added to the plug–in specifi-
cation because versions of Photoshop prior to
Photoshop 2.5 had a strong bias toward hori-
zontal strips. Using this routine, a plug–in
could acquire an image in vertical strips by
passing Photoshop horizontal strips and then
having Photoshop transpose the data when it
was done.

Handle duotoneInfo If your plug–in module is acquiring a duotone
mode image, you should allocate a handle
and return the duotone information here.
The format of the information is the same as
that provided by export modules.

Your plug–in is responsible for freeing the
handle in its acquireSelectorFinish handler.

int32 diskSpace This field contains the number of free bytes
on the plug–in host’s scratch disk or disks. If
the plug–in host does not use a scratch disk, it
should set this field to –1.

SpaceProc spaceProc If not NULL, this field contains a pointer to the
SpaceProc callback. See chapter 3 for details.

Table 6–1: AcquireRecord fields (Continued)

Type Field Description

Acquire Modules

Adobe Photoshop Software Development Kit 63

PlugInMonitor monitor This field contains the monitor setup informa-
tion for the host. Refer to Appendix A for
details.

void * platformData This field contains a pointer to platform spe-
cific data. Not used under Mac OS.

BufferProcs * bufferProcs This field contains a pointer to the buffer
suite if it is supported by the plug–in host,
otherwise NULL. See chapter 3 for details.

ResourceProcs * resourceProcs This field contains a pointer to the pseudo–
resource suite if it is supported by the plug–in
host, otherwise NULL. See chapter 3 for
details.

ProcessEventProc processEvent This field contains a pointer to the ProcessEv-
ent callback documented in chapter 3. It con-
tains NULL if the callback is not supported.
This function is not useful on Windows.

Boolean canReadBack If the plug–in host supports acquire modules
reading back image data for further process-
ing, it should set this field to TRUE. Photoshop
always sets this field to TRUE.

Boolean wantReadBack If your plug–in module sets this flag and the
host supports image read back for acquire
modules, then the host will ignore the con-
tents of the buffer it is passed and will
instead fill the buffer with the image data. It
will store the data in the format described by
loPlane, hiPlane, colBytes, rowBytes,
planeBytes, and planeMap. If theRect exceeds
the bounds of the image, those portions of
the buffer will be left untouched.

Boolean acquireAgain If your plug–in module wishes to be called
again to acquire another image, you should
set this flag in your acquireSelectorFinish han-
dler. Plug–in hosts that support multiple
image acquisition should start the acquisition
process again with a call to acquireSelector-
Start to begin acquiring a new image.

If you do not want to put up a user interface
for each acquisition, you should display your
interface during the acquireSelectorPrepare
call. With the addition of the finalize selector,
acquire plug–in modules can now put up an
interface that remains active across multiple
acquisitions.

Your plug–in module should not count on
being called again just because it sets this
flag; your acquireSelectorFinish handler
should still do all of the necessary clean–up.

Boolean canFinalize If the host can make the finalize call, it
should set this field to TRUE.

DisplayPixelsProc displayPixels This field contains a pointer to the DisplayPix-
els callback. It contains NULL if the callback is
not supported. See chapter 3 for details.

HandleProcs * handleProcs This field contains a pointer to the handle
suite if it is supported by the host, otherwise
NULL. See chapter 3 for details.

These fields are new in version 3.0.

Table 6–1: AcquireRecord fields (Continued)

Type Field Description

Acquire Modules

Adobe Photoshop Software Development Kit 64

Boolean wantFinalize This flag requests an acquireSelectorFinalize
call if the host provides the newer protocol
(see also canFinalize).

char[3] reserved1 This 3 byte field is used for alignment to a
four–byte boundary.

ColorServicesProc colorServices This field contains a pointer to the ColorSer-
vices callback. It contains NULL if the callback
is not supported.

AdvanceStateProc advanceState The advanceState callback allows your plug–
in module to drive the interaction through
the inner (acquireSelectorContinue) loop
without actually returning to the plug–in
host. If the advanceState call returns an error,
you should treat this as a continue error and
return the error code back to the plug–in
host.

These fields are new in 3.0.4.

ImageServicesProcs
*

imageServicesProcs This is a pointer to the image services callback
suite. See chapter 3 for details.

int16 tileWidth The width and height of a tile.

int16 tileHeight

Point tileOrigin The origin of a known tile.

PropertyProcs * propertyProcs A pointer to the Property callback suite. Refer
to chapter 3 for more information.

char[200] reserved These are set to zero by the plug–in host for
future expansion of the plug–in standard. Do
not use these.

Table 6–1: AcquireRecord fields (Continued)

Type Field Description

7

Export Modules

Adobe Photoshop Software Development Kit

65

Export plug–in modules are used to output an image from an open Photo-
shop document. They can be used to print to printers that do not have
Chooser–level (Mac OS) driver support.

Export modules can also be used to save images in unsupported or
compressed file formats, although file format modules (see chapter 8) often
are better suited for this purpose (file format modules are access directly
from the Save or Save As... commands, while export modules use the Export
sub–menu).

Under Mac OS, the code resource and file type for export modules is '8BEM'.
Under Windows, the file extension is .8BE.

Sample plug–ins

DummyExport is a sample export module.

HistoryExport is a sample export module primarily concerned with demon-
strating the pseudo–resource callbacks. It works in conjunction with the
Dissolve plug–in to maintain a series of history strings for a file. This sample
only works on Macintosh platforms.

Paths to Illustrator demonstrates using the getProperties callback and
exporting of pen path information. The sample code works only on Macin-
tosh platforms. It is fairly straightforward to extend the porting concepts
from other examples to port this one over to the Windows platform. Please
read the comments inside the sample source for important information
regarding pen paths (like byte ordering etc.).

Export Modules

Adobe Photoshop Software Development Kit

66

Calling sequence

When the user invokes an export plug–in module by selecting its name from
the Export submenu, Photoshop calls it with the sequence of selector values
shown in the figure above. The actions for these selectors are discussed next.

exportSelectorPrepare

The exportSelectorPrepare selector calls allow your plug–in module to adjust
Photoshop’s memory allocation algorithm. Photoshop sets

maxData

 to the
maximum number of bytes it can allocate to your plug–in. You may want to
reduce

maxData

 for increased efficiency. Refer to chapter 3 for details on
memory management strategies.

exportSelectorStart

Most plug–in modules will display their dialog box, if any, during this call.

During this call, your plug–in module should set

theRect

,

loPlane

 and

hiPlane

to let Photoshop know what area of the image it wishes to process first.

The total number of bytes requested should be less than

maxData

. If the
image is larger than

maxData

, the plug–in must process the image in pieces.
There are no restrictions on how the pieces tile the image; horizontal and
vertical strips are allowed as are a grid of tiles.

Loop until error or
empty rectangle.

Export

Command

exportSelectorContinue

exportSelectorPrepare

Calculate memory require-
ments.

exportSelectorStart

Display user dialog.

Set initial image rectangle
to process.

Export portion of image.

Indicate next rectangle to
process.

exportSelectorFinish

Clean up.

Done.

Adobe Photoshop™ 3.0.4 Acme Export Plug–in

Export Modules

Adobe Photoshop Software Development Kit

67

exportSelectorContinue

During this routine, your plug–in module should process the image data
pointed to by

data

. You should then adjust

theRect

,

loPlane

 and

hiPlane

 to
let Photoshop know what area of the image you wish to process next. If the
entire image has been processed, set

theRect

 to an empty rectangle.

The requested image data is pointed to by

data

. If more than one plane has
been requested (

loPlane

 < >

hiPlane

), the data is interleaved. The offset
from one row to the next is indicated by

rowBytes

. This is not necessarily
equal to the width of

theRect

; there may be additional pad bytes at the end
of each row.

exportSelectorFinish

This call allows your plug–in module to clean up after an image export. This
call is made if and only if the exportSelectorStart routine returns without
error, even if the exportSelectorContinue routine returns an error.

If Photoshop detects Command–period (Mac OS) or Escape (Windows)
between calls to the exportSelectorContinue routine, it will call the exportS-
electorFinish routine. You should be careful here, since normally the plug–in
would be expecting another exportSelectorContinue call.

Notes:

1. If exportSelectorStart succeeds then Photoshop guarantees that export-
SelectorFinish will be called.

2. Photoshop may choose to go exportSelectorFinish instead of exportSe-
lectorContinue if it detects a need to terminate while building the
requested buffer.

3. advanceState can be called from either exportSelectorStart or exportS-
electorContinue and will drive Photoshop through the process of allo-
cating and loading the requested buffer. Termination is reported as
userCanceledErr in the result from the advanceState call. Calling
advanceState when theRect is empty will result in no work being done.

Error return values

The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer.

#define exportBadParameters –30200 //an error with the interface parameters
#define exportBadMode –30201 //the module does not support <mode> images

Export Modules

Adobe Photoshop Software Development Kit

68

The Export parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to an ExportRecord structure with the following
fields. This structure is declared in PIExport.h.

Table 7–1: ExportRecord structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Plug–in modules can use this value
for copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the TestAbort
callback.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback. This procedure
should only be called during the actual main
operation of the plug–in, not during long
operations during the preliminary user inter-
face.

int32 maxData Photoshop initializes this field to the maxi-
mum of number of bytes it can free up. You
may reduce this value during in your exportS-
electorPrepare handler. The exportSelector-
Continue handler should process the image in
pieces no larger than maxData, less the size of
any large tables or scratch areas it has allo-
cated.

int16 imageMode The mode of the image being exported (gray-
scale, RGB Color, etc.). See the header file for
possible values. Your exportSelectorStart han-
dler should return an exportBadMode error if
it is unable to process this mode of image.

Point imageSize The image’s width (imageSize.h) and height
(imageSize.v) in pixels.

int16 depth The image’s resolution in bits per pixel per
plane. The only possible settings are 1 for bit-
map mode images, and 8 for all other modes.

int16 planes The number of channels in the image. For
example, if an RGB image without alpha chan-
nels is being processed, this field will be set to
3.

Fixed imageHRes The image’s horizontal and vertical resolution
in terms of pixels per inch. These are fixed
point numbers (16 binary digits).Fixed imageVRes

LookUpTable redLUT If an indexed color or duotone mode image is
being processed, these fields will contain its
color table.LookUpTable greenLUT

LookUpTable blueLUT

Rect theRect Your exportSelectorStart and exportSelector-
Continue handlers should set this field to
request a piece of the image for processing. It
should be set to an empty rectangle when
complete.

int16 loPlane Your exportSelectorStart and exportSelector-
Continue handlers should set these fields to
the first and last planes to process next.int16 hiPlane

Export Modules

Adobe Photoshop Software Development Kit

69

void * data This field contains a pointer to the requested
image data. If more than one plane has been
requested (

loPlane

 is not equal to

hiPlane

),
the data is interleaved.

int32 rowBytes The offset between rows for the requested
image data.

Str255 fileName The name of the file the image was read from.
File exporting modules should use this field as
the default name for saving.

int16 vRefNum The volume reference number of the file the
image was read from.

Boolean dirty If your plug–in module is used to save an
image into a file, you should set this field to

TRUE

 to prompt the user to save any unsaved
changes when the image is eventually closed.
If your module outputs to a printer or other
hardware device, you should set this to

FALSE

.

Rect selectBBox The bounding box of the current selection. If
there is no current selection, this is an empty
rectangle.

OSType hostSig The plug–in host provides its signature to your
plug–in module in this field. Photoshop’s sig-
nature is '8BIM'.

HostProc hostProc If not

NULL

, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should ver-
ify hostSig before calling this procedure. This
provides a mechanism for hosts to extend the
plug–in interface to support application spe-
cific features.

Handle duotoneInfo When exporting a duotone mode image, the
host allocates a handle and fills it with the
duotone information. The format of the infor-
mation is the same as that required by acquisi-
tion modules, and should be treated as a
black box by plug–ins.

int16 thePlane Currently selected channel, or –1 if a compos-
ite color channel, or –2 if some other combi-
nation of channels.

PlugInMonitor monitor This field contains the monitor setup informa-
tion for the host. See Appendix A for more
details.

void * platformData This field contains a pointer to platform spe-
cific data. Not used under Mac OS.

BufferProcs * bufferProcs This field contains a pointer to the buffer
suite if it is supported by the host, otherwise

NULL

.

ResourceProcs * resourceProcs This field contains a pointer to the pseudo–
resource suite if it is supported by the host,
otherwise

NULL

.

ProcessEventProc processEvent This field contains a pointer to the ProcessEv-
ent callback. It contains

NULL

 if the callback is
not supported.

DisplayPixelsProc displayPixels This field contains a pointer to the DisplayPix-
els callback. It contains

NULL

 if the callback is
not supported.

Table 7–1: ExportRecord structure (Continued)

Type Field Description

Export Modules

Adobe Photoshop Software Development Kit

70

HandleProcs * handleProcs This field contains a pointer to the handle
suite if it is supported by the host, otherwise

NULL

.

ColorServicesProc colorServices This field contains a pointer to the ColorSer-
vices callback documented in the general doc-
umentation. It contains

NULL

 if the callback is
not supported.

GetPropertyProc getProperty This field contains a pointer to the property
suite if it is supported by the host, otherwise

NULL

.

This direct callback has been replaced by the
Property suite (below), but is maintained here
for backwards compatibility.

AdvanceStateProc advanceState The advanceState callback allows you to drive
the interaction through the inner (exportSe-
lectorContinue) loop without actually return-
ing from the plug–in. If it returns an error,
then the plug–in generally should treat this as
a continue error and pass it on when it
returns.

For documents with transparency, the export module is passed the merged data together
with the layer mask for the current target layer. This information is contained in the fol-
lowing fields:

int16 layerPlanes This field contains the number of planes of
data possibly governed by a transparency
mask.

int16 transparencyMask This field contains 1 or 0 indicating whether
the data is governed by a transparency mask.

int16 layerMasks This field contains the number of layers masks
(currently 1 or 0) for which 255 = fully
opaque. In Photoshop 3.0.4, layer masks are
not visible to export modules since they are
layer properties rather than document proper-
ties.

int16 invertedLayer-
Masks

This field contains the number of layers masks
(currently 1 or 0) for which 255 = fully trans-
parent. In Photoshop 3.0.4, layer masks are
not visible to export modules since they are
layer properties rather than document proper-
ties.

int16 nonLayerPlanes This field contains the number of planes of
non–layer data, e.g., flat data or alpha chan-
nels.

The planes are arranged in that order. Thus,
an RGB image with an alpha channel and a
layer mask on the current target layer would
appear as: red, green, blue, transparency,
layer mask, alpha channel

These fields are new in version 3.0.4 of Adobe Photoshop.

ImageServicesProcs
*

imageServicesProcs The image services callback suite. See chapter
3 for details.

int16 tileWidth The width of the tiles. Zero if not set.

int16 tileHeight The height of the tiles. Zero if not set.

Table 7–1: ExportRecord structure (Continued)

Type Field Description

Export Modules

Adobe Photoshop Software Development Kit

71

Point tileOrigin The origin point for the tiles.

PropertyProcs * propertyProcs A pointer to the property callback suite. See
chapter 3 for details.

char[194] reserved These bytes are set to zero by the host for
future expansion of the plug–in standard.
Must not be used by plug–ins.

Table 7–1: ExportRecord structure (Continued)

Type Field Description

8

Filter Modules

Adobe Photoshop Software Development Kit

72

Filter modules modify a selected area of an image, and are accessed under
the Filter menu. Filter actions range from subtle shifts of hue or brightness,
to wild changes that create stunning visual effects.

Under Mac OS, the code resource and file type for filter modules is '8BFM'.
Under Windows, the file extension is .8BF.

Sample plug–in

Dissolve is a sample filter plug–in which also demonstrates how to manipu-
late Photoshop’s layers.

Filter Modules

Adobe Photoshop Software Development Kit

73

Calling sequence

When the user invokes a filter plug–in module by selecting its name from the
Filter menu, Photoshop calls it with the sequence of selector values shown in
the figure above. The actions for these selectors is discussed next.

filterSelectorParameters

If the plug–in filter has any parameters that the user can set, it should
prompt the user and save the parameters in a relocatable memory block
whose handle is stored in the parameters field. Photoshop initializes the
parameters field to

NULL

 when starting up.

This routine may or may not be called depending on how the user invokes
the filter. After a filter has been invoked once, the user may re–apply that
same filter with the same parameters (this is the “Last Filter” command
under the Filter menu). In this case, the plug–in host does not call filterSelec-
torParameters, and the user will not be shown any dialogs to enter new
parameters.

Since the same parameters can be used on different size images, the parame-
ters should not depend on the size or mode of the image, or the size of the
filtered area (these fields are not even defined at this point).

A future version of Photoshop may have a macro processor which would save
the block pointed to by the parameters field when recording, so that it can
operate the filter without user input during play back (Adobe Premiere

actually uses this feature). To be compatible with this feature, all parameters

Filter

Command

filterSelectorContinue

filterSelectorParameters

Calculate memory require-
ments.

May display user interface for
setting filter parameters.

filterSelectorStart

Allocate memory needed from
filter parameters.

Set initial image rectangles to
process.

Filter a portion of the image.

Update image rectangles for
next pass.Loop until error or

empty rectangle.
filterSelectorFinish

Clean up

Done.

“Last Filter”

Command

Adobe Photoshop™ 3.0.4 Acme Blur Plug–in

Filter Modules

Adobe Photoshop Software Development Kit

74

must be saved in a relocatable block whose handle is stored in the parame-
ters field.

The parameter block should contain the following information:

1. A signature so that the plug–in can do a quick confirmation that this is,
in fact, one of its parameter blocks.

2. A version number so that the plug–in can evolve without requiring a
new signature.

3. A convention regarding byte–order for cross–platform support (or a
flag to indicate what byte order is being used).

The plug–in should validate the contents of its parameter handle when it
starts processing if there is a danger of it crashing from bad parameters.

You may wish to design your filter module so that you store default values
or the last used set of values for your parameter block in the filter module’s
resource fork (Mac OS) or another file (Windows). This way, you can save
preference settings for your filter plug–in across invocations of the plug–in
host.

filterSelectorPrepare

The filterSelectorPrepare selector calls allow your plug–in module to adjust
Photoshop’s memory allocation algorithm. Photoshop sets

maxData

 to the
maximum number of bytes it can allocate to your plug–in. You may want to
reduce

maxData

 for increased efficiency. Refer to chapter 3 for details on
memory management strategies.

The fields such as

imageSize

,

planes

,

filterRect

, etc. have now been defined,
and can be used in computing your buffer size requirements.

If your plug–in filter module is planning on allocating any large (>= about
32K) buffers or tables, you should set the

bufferSpace

 field to the number of
bytes you are planning to allocate. Photoshop will then try to free up that
amount of memory before calling the plug–in’s filterSelectorStart handler.

Alternatively, you can set this field to zero and use the buffer and handle
suites if they are available.

filterSelectorStart

Your plug–in should set

inRect

 and

outRect

 (and

maskRect

, if it is using the
selection mask) to request the first areas of the image to work on.

If at all possible, you should process the image in pieces to minimize memory
requirements. Unless there is a lot of startup/shutdown overhead on each
call (for example, communicating with an external DSP), tiling the image
with rectangles measuring 64x64 to 128x128 seems to work fairly well.

filterSelectorContinue

Your filterSelectorContinue handler is called repeatedly as long as at least
one of the

inRect

,

outRect

, or

maskRect

 fields is non–empty.

Your handler should process the data pointed by

inData

 and

outData

 (and
possibly

maskData

) and then update

inRect

 and

outRect

 (and

maskRect

, if
using the selection mask) to request the next area of the image to process.

Filter Modules

Adobe Photoshop Software Development Kit

75

filterSelectorFinish

This call allows the plug–in to clean up after a filtering operation. This call is
made if and only if the filterSelectorStart handler returns without error,
even if the filterSelectorContinue routine returns an error.

If Photoshop detects Command–period (Mac OS) or Escape (Windows)
between calls to the filterSelectorContinue routine, it will call the filterSelec-
torFinish routine. Be careful here, since normally the plug–in would be
expecting another filterSelectorContinue call.

Notes:

1. If filterSelectorStart succeeds, then Photoshop guarantees that filterSe-
lectorFinish will be called.

2. Photoshop may choose to go to filterSelectorFinish instead of filterSe-
lectorContinue if it detects a need to terminate while fulfilling a
request.

3. AdvanceState may be called from either filterSelectorStart or filterSe-
lectorContinue and will drive Photoshop through the buffer set up
code. If the rectangles are empty, the buffers will simply be cleared.
Termination is reported as userCanceledErr in the result from the
advanceState call.

Error return values

The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer.

#define filterBadParameters –30100 // a problem with the interface
#define filterBadMode –30101 // module doesn’t support <mode> images

Filter Modules

Adobe Photoshop Software Development Kit

76

The Filter parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to a FilterRecord structure with the following fields.
This structure is declared in PIFilter.h.

Table 8–1: FilterRecord structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s
serial number. Your plug–in module
can use this value for copy protection,
if desired.

TestAbortProc abortProc This field contains a pointer to the Tes-
tAbort callback documented in chapter
3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback documented
in chapter 3. This procedure should
only be called during the actual main
operation of the plug–in, not during
long operations during the preliminary
user interface such as building a pre-
view.

Handle parameters Photoshop initializes this handle to

NULL

 at startup. If your plug–in filter
has any parameters that the user can
set, you should allocate a relocatable
block in your filterSelectorParameters
handler, store the parameters in the
block, and store the block’s handle in
this field.

Point imageSize The image’s width (imageSize.h) and
height (imageSize.v) in pixels. If the
selection is floating, this field instead
holds the size of the floating selection.

int16 planes For version 4 filters, this field contains
the total number of active planes in
the image, including alpha channels.
The image mode should be determined
by looking at

imageMode

. For pre–ver-
sion 4 filters, this field will be equal to
3 if filtering the RGB “channel” of an
RGB color image, or 4 if filtering the
CMYK “channel” of a CMYK color
image. Otherwise it will be equal to 1.

Rect filterRect The area of the image to be filtered.
This is the bounding box of the selec-
tion, or if there is no selection, the
bounding box of the image. If the
selection is not a perfect rectangle,
Photoshop automatically masks the
changes to the area actually selected
(unless the plug–in turns off this fea-
ture using autoMask). This allows most
filters to ignore the selection mask,
and still operate correctly.

RGBColor background The current background and fore-
ground colors. If planes is equal to 1,
these will have already been converted
to monochrome. (Obsolete: Use back-
Color and foreColor.)

RGBColor foreground

Filter Modules

Adobe Photoshop Software Development Kit

77

int32 maxSpace This lets the plug–in know the maxi-
mum number of bytes of information it
can expect to be able to access at once
(input area size + output area size +
mask area size + bufferSpace).

int32 bufferSpace If the plug–in is planning on allocating
any large internal buffers or tables, it
should set this field during the filterSe-
lectorPrepare call to the number of
bytes it is planning to allocate. Photo-
shop will then try to free up the
requested amount of space before call-
ing the filterSelectorStart routine.

Rect inRect Set this field in your filterSelectorStart
and filterSelectorContinue handlers to
request access to an area of the input
image. The area requested must be a
subset of the image’s bounding rectan-
gle. After the entire filterRect has been
filtered, this field should be set to an
empty rectangle.

int16 inLoPlane Your filterSelectorStart and filterSelec-
torContinue handlers should set these
fields to the first and last input planes
to process next.

int16 inHiPlane

Rect outRect Your plug–in should set this field in its
filterSelectorStart and filterSelector-
Continue handlers to request access to
an area of the output image. The area
requested must be a subset of

filter-
Rect

. After the entire

filterRect

 has
been filtered, this field should be set to
an empty rectangle.

int16 outLoPlane Your filterSelectorStart and filterSelec-
torContinue handlers should set these
fields to the first and last output
planes to process next.

int16 outHiPlane

void * inData This field contains a pointer to the
requested input image data. If more
than one plane has been requested
(

inLoPlane

 is not equal to

inHiPlane

),
the data is interleaved.

int32 inRowBytes The offset between rows of the input
image data. There may or may not be
pad bytes at the end of each row.

void * outData This field contains a pointer to the
requested output image data. If more
than one plane has been requested
(

outLoPlane

 is not equal to

outHiP-
lane

), the data is interleaved.

int32 outRowBytes The offset between rows of the output
image data. There may or may not be
pad bytes at the end of each row.

Boolean isFloating This field is set

TRUE

 if and only if the
selection is floating.

Boolean haveMask This field is set

TRUE

 if and only if a
non–rectangular area has been
selected.

Table 8–1: FilterRecord structure (Continued)

Type Field Description

Filter Modules

Adobe Photoshop Software Development Kit

78

Boolean autoMask By default, Photoshop automatically
masks any changes to the area actually
selected. If

isFloating

 is

FALSE

, and

haveMask

 is

TRUE

, your plug–in can
turn off this feature by setting this
field to

FALSE

. It can then perform its
own masking.

Rect maskRect If

haveMask

 is

TRUE

, and your plug–in
needs access to the selection mask,
your should set this field in your fil-
terSelectorStart and filterSelectorCon-
tinue handlers to request access to an
area of the selection mask. The
requested area must be a subset of

fil-
terRect

. This field is ignored if there is
no selection mask.

void * maskData A pointer to the requested mask data.

int32 maskRowBytes The offset between rows of the mask
data.

FilterColor backColor The current background and fore-
ground colors, in the color space native
to the image.FilterColor foreColor

OSType hostSig The plug–in host provides its signature
to your plug–in module in this field.
Photoshop’s signature is '8BIM'.

HostProc hostProc If not

NULL

, this field contains a pointer
to a host–defined callback procedure
that can do anything the host wishes.
Plug–ins should verify

hostSig

 before
calling this procedure. This provides a
mechanism for hosts to extend the
plug–in interface to support applica-
tion specific features.

int16 imageMode The mode of the image being filtered
(Gray Scale, RGB Color, etc.). See the
header file for possible values. Your fil-
terSelectorStart handler should return
a filterBadMode result code if it is
unable to process this mode of image.

Fixed imageHRes The image’s horizontal and vertical res-
olution in terms of pixels per inch.
These are fixed point numbers (16
binary digits).

Fixed imageVRes

Point floatCoord If isFloating is

TRUE

, the coordinate of
the top–left corner of the floating
selection in the main image’s coordi-
nate space.

Point wholeSize If isFloating is

TRUE

, the size in pixels of
the entire main image.

PlugInMonitor monitor This field contains the monitor setup
information for the host. See appendix
A for details.

void * platformData This field contains a pointer to plat-
form specific data. Not used under Mac
OS.

BufferProcs * bufferProcs This field contains a pointer to the
buffer suite if it is supported by the
host, otherwise

NULL

. See chapter 3 for
details.

Table 8–1: FilterRecord structure (Continued)

Type Field Description

Filter Modules

Adobe Photoshop Software Development Kit

79

ResourceProcs * resourceProcs This field contains a pointer to the
pseudo–resource suite if it is supported
by the host, otherwise

NULL

. See chap-
ter 3 for details.

ProcessEventProc processEvent This field contains a pointer to the Pro-
cessEvent callback. It contains

NULL

 if
the callback is not supported. See
chapter 3 for details.

DisplayPixelsProc displayPixels This field contains a pointer to the Dis-
playPixels callback. It contains

NULL

 if
the callback is not supported. See
chapter 3 for details.

HandleProcs * handleProcs This field contains a pointer to the
handle callback suite if it is supported
by the host, otherwise

NULL

. See chap-
ter 3 for details.

These fields are new in version 3.0.

Boolean supportsDummyPlanes Does the host support the plug–in
requesting non–existent planes? (see
dummy planes fields, below) This field
is set by the host to indicate whether it
respects the dummy planes fields.

Boolean supportsAlternateLayouts Does the host support data layouts
other than rows of columns of planes?
This field is set by the plug–in host to
indicate whether it respects the want-
Layout field.

int16 wantLayout The desired layout for the data. See
PIGeneral.h. The plug–in host only
looks at this field if it has also set

sup-
portsAlternateLayouts

.

int16 filterCase The type of data being filtered, flat,
floating, layer with editable transpar-
ency, layer with preserved transpar-
ency. With and without a selection. A
zero indicates that the host did not set
this field.

int16 dummyPlaneValue The value to store into any dummy
planes. 0..255 = specific value. –1 =
leave undefined (i.e., random)

void * premiereHook See the Adobe Premiere Plug–in Devel-
oper’s Kit.

AdvanceStateProc advanceState The AdvanceState callback. See chapter
3 for details on this callback function.

Boolean supportsAbsolute Does the host support absolute chan-
nel indexing? Absolute channel index-
ing ignores visiblity concerns and
numbers the channels from zero start-
ing with the first composite channel if
any, followed by the transparency, fol-
lowed by any layer masks, followed by
any alpha channels.

Boolean wantsAbsolute Enable absolute channel indexing for
the input. This is only useful if

support-
sAbsolute

 is

TRUE

. Absolute indexing is
useful for things like accessing alpha
channels.

Table 8–1: FilterRecord structure (Continued)

Type Field Description

Filter Modules

Adobe Photoshop Software Development Kit 80

GetPropertyProc getProperty The GetProperty callback.

This direct callback pointer has been
superceded by the property callback
suite, but is maintained here for back-
wards compatibility. See chapter 3 for
details.

Boolean cannotUndo If the filter makes a non–undoable
change, then setting this field will pre-
vent Photoshop from offering undo for
the filter. This is rarely needed.

int16 inputPadding The input, output, and mask can be
padded when loaded. The options for
padding include specifying a specific
value (0..255), specifying edge replica-
tion (plugInWantsEdgeReplication),
specifying that the data be left random
(plugInDoesNotWantPadding), or
requesting that an error be signaled
for an out of bounds request (plugIn-
WantsErrorOnBoundsException). The
error case is the default since previous
versions would have errored out in this
event.

int16 outputPadding

int16 maskPadding

char samplingSupport Does the host support non–1:1 sam-
pling of the input and mask? Photo-
shop 3.0.1 supports integral sampling
steps (it will round up to get there).
This is indicated by the value hostSup-
portsIntegralSampling. Future versions
may support non–integral sampling
steps. This will be indicated with host-
SupportsFractionalSampling.

char reservedByte (for alignment)

Fixed inputRate The sampling rate for the input. The
effective input rectangle (in normal
sampling coordinates) is inRect * inpu-
tRate (i.e., inRect.top * inputRate,
inRect.left * inputRate, inRect.bottom
* inputRate, inRect.right * inputRate).
inputRate is rounded to the nearest
integer in Photoshop 3.0.1. Since the
scaled rectangle may exceed the real
source data, it is a good idea to set
some sort of padding for the input as
well.

Fixed maskRate Like inputRate, but as applied to the
mask data.

int16 inLayerPlanes The number of planes (channels) in
each category for the input data. This
is the order in which the planes are
presented to the plug–in and as such
gives the structure of the input data.
The inverted layer masks are ones
where 0 = fully visible and 255 = com-
pletely hidden. If these are all zero,
then the plug–in should assume the
host has not set them.

int16 inTransparencyMask

int16 inLayerMasks

int16 inInvertedLayerMasks

int16 inNonLayerPlanes

Table 8–1: FilterRecord structure (Continued)

Type Field Description

Filter Modules

Adobe Photoshop Software Development Kit 81

int16 outLayerPlanes The structure of the output data. This
will be a prefix of the input planes. For
example, in the protected transparency
case, the input can contain a transpar-
ency mask and a layer mask while the
output will contain just the layer-
Planes.

int16 outTransparencyMask

int16 outLayerMasks

int16 outInvertedLayerMasks

int16 outNonLayerPlanes

int16 absLayerPlanes The structure of the input data when
wantsAbsolute is TRUE.

int16 absTransparencyMask

int16 absLayerMasks

int16 absInvertedLayerMasks

int16 absNonLayerPlanes

int16 inPreDummyPlanes The number of extra planes before and
after the input data. This is only avail-
able if supportsDummyChannels is
TRUE. This is used for things like forcing
RGB data to appear as RGBA.

int16 inPostDummyPlanes

int16 outPreDummyPlanes Like inPreDummyPlanes and inPost-
DummyPlanes, except it applies to the
output data.int16 outPostDummyPlanes

int32 inColumnBytes The step from column to column in the
input. If using the layout options, this
value may change from being equal to
the number of planes. If it is zero, you
should assume that the plug–in host
has not set it.

int32 inPlaneBytes The step from plane to plane in the
input. Normally one, but this changes
if the plug–in uses the layout options.
If it is zero, you should assume that the
plug–in host has not set it.

int32 outColumnBytes The output equivalent of the previous
two fields.

int32 outPlaneBytes

These fields are new in version 3.0.4.

ImageServicesProcs
*

imageServicesProcs This is a pointer to the image services
callback suite. See chapter 3 for
details.

int16 inTileHeight Tiling for the input.

int16 inTileWidth

Point inTileOrigin

int16 absTileHeight Tiling for the absolute data.

int16 absTileWidth

Point absdTileOrigin

int16 outTileHeight Tiling for the output.

int16 outTileWidth

Point outTileOrigin

int16 maskTileHeight Tiling for the mask.

int16 maskTileWidth

Point maskTileOrigin

Table 8–1: FilterRecord structure (Continued)

Type Field Description

Filter Modules

Adobe Photoshop Software Development Kit 82

char[94] reserved These bytes are set to zero by the host
for future expansion of the plug–in
standard. Must not be used by plug–
ins.

Table 8–1: FilterRecord structure (Continued)

Type Field Description

9

Format Modules

Adobe Photoshop Software Development Kit

83

Format plug–in modules (sometimes referred to as image format, or file
format modules) are used to add new file types to the Open..., Save, and
Save As... commands. Adobe Photoshop is shipped with several file format
modules to read and write different formats including GIF, MacPaint, and
BMP.

Acquire and export modules may also be used to read and write files. You
should create a format module rather than an acquire and/or export module
if you want your users to treat your files in the same fashion as native Photo-
shop files. In particular you should use a format module if:

• You want users to be able to create, modify, save, and re–open files in
your format. If your format uses a lossy compression algorithm, you may
want to consider image degradation issues for this situation.

• You want users to be able to double–click a document to launch Photo-
shop (Mac OS), or associate your file extension with the Photoshop appli-
cation (Windows).

You may not want to use a format module if:

• With respect to Photoshop, your file format is read–only or write–only.

• The image compression and/or color space conversion necessary for your
file format would result in unacceptable image degradation if users read
and saved repeatedly.

Under Mac OS, the code resource and file type for format modules is '8BIF'.
Under Windows, the file extension is .8BI.

Sample plug–in

Sample Format is a sample format module. This module is written to use the
new AdvanceStateProc callback, introduced in Photoshop 3.0.

Format module operations

File format plug–in modules have two main functions: reading an image
from a file, and writing an image to a file. Reading a file is a two step
process:

• The

formatSelectorFilterFile

 selector is used to determine whether a
format module can read a particular file. This selector is called when the
user performs an Open command, and is described in more detail on the
next page.

• The

read sequence

 is used to read image files.

Writing a file consists of three sequences:

• The

options sequence

 is used to request save options from the user. It will
only be used when first saving a document in a particular format.

• The

estimate sequence

 estimates the file size so that the host can decide
whether there is enough disk space available.

• The

write sequence

 actually writes the file.

Format Modules

Adobe Photoshop Software Development Kit

84

Reading a file (file filtering)

When the user selects a file with the Open... command from the file menu,
there may be one or more format module that lists the file type (Mac OS) or
file extension (Windows) as a supported format. For each such plug–in
module, Photoshop will call the plug–in with a

formatSelectorFilterFile

selector. The plug–in module should then examine the file to determine
whether the file is one that it can process, and indicate this in its

result

parameter:

if (module can read this file)
*result = noErr;

else

*result = formatCannotRead;

If more than one format module can read the file, Photoshop uses the
following priority scheme to determine which plug–in module to use:

(1) The module with the first PICategoryProperty string (sorted alphabeti-
cally) will be used. Modules with no PICategoryProperty will default to
their PINameProperty for this comparison.

(2) If two or more modules have matching category names, the module
with the highest PIPriorityProperty value will be used.

(3) If two or more modules have matching category and priority, which
module will be selected is undefined.

Choose format plug–in
to use (see below), and
read the file (see next
page).

Open

Command

formatSelectorFilterFile

Indicate whether this module
can read the file.

Adobe Photoshop™ 3.0.4 AcmeFormat

formatSelectorFilterFile

Indicate whether this module
can read the file.

BarneyFormat

BettyFormat
formatSelectorFilterFile

Indicate whether this module
can read the file.

•
•
•
etc.

Format Modules

Adobe Photoshop Software Development Kit

85

Reading a file (read sequence)

formatSelectorFilterFile

This selector is discussed in more detail on the previous page. The rest of this
sequence will be called only if your plug–in module returns noErr from this
call, and your module is selected by the plug–in host to process the file.

formatSelectorReadPrepare

This selector allows your plug–in module to adjust Photoshop’s memory allo-
cation algorithm. Photoshop sets

maxData

 to the maximum number of bytes
it can allocate to your plug–in. You may want to reduce

maxData

 for
increased efficiency. Refer to chapter 3 for details on memory management
strategies.

formatSelectorReadStart

This selector allows the plug–in module to begin its interaction with the
host.

You should initialize

imageMode

,

imageSize

,

depth

,

planes

,

imageHRes

 and

imageVRes

. If an indexed color image is being opened, you should also set

redLUT

,

greenLUT

 and

blueLUT

. If your plug–in has a block of image

Loop until error or
data == NULL.

Open

Command

formatSelectorReadContinue

formatSelectorReadPrepare

Calculate memory require-
ments.

formatSelectorReadStart

Allocate buffers for reading and
processing image file.

Read any file header informa-
tion.

Read file, process and return first
portion of image data.

Read file, process, and re-
turn next portion of image.

formatSelectorReadFinish

Read any file trailer infor-
mation.

Clean up.Done.

Adobe Photoshop™ 3.0.4 Acme IFF

formatSelectorFilterFile

(See previous page.)

Format Modules

Adobe Photoshop Software Development Kit

86

resources you wish to have processed, you should read it in from the file and
set

imageRsrcData

 to be a handle to the resource data. See chapter 10 for
more information about Photoshop image resources.

Your plug–in should allocate and read the first pixel image data buffer as
appropriate. The area of the image being returned to the plug–in host is
specified by

theRect

,

loPlane

, and

hiPlane

. The actual pixel data is pointed
by

data

. The

colBytes

,

rowBytes

,

planeBytes

, and

planeMap

 fields must
specify the organization of the data.

Photoshop is very flexible in the format in which image data can be read.
Here are two examples.

(1) To return just the red plane of an RGB color image,

loPlane

 and

hiPlane

 should be set to 0,

colBytes

 should be set to 1, and

rowBytes

should be set to the width of the area being returned (

planeBytes

 is
ignored in this case, since

loPlane

 ==

hiPlane

).

(2) To return the RGB data in interleaved form (RGBRGB...),

loPlane

 should
be set to 0,

hiPlane

 to 2,

planeBytes

 to 1,

colBytes

 to 3, and

rowBytes

to 3 times the width of area being returned.

formatSelectorReadContinue

This selector may be used to process a sequence of areas within the image.
Your handler should process any incoming data and then, just as with the
start call, set up

theRect

,

loPlane

,

hiPlane

,

planeMap

,

data

,

colBytes

,

rowBytes

, and

planeBytes

 to describe the next chunk of the image being
returned. The host will keep calling with formatSelectorReadContinue until
you set

data

 to

NULL

.

formatSelectorReadFinish

The formatSelectorReadFInish selector allows you to clean–up from the read
operation just performed. This call is made by the plug–in host if and only if
formatSelectorReadStart returned without error, even if one of the format-
SelectorReadContinue calls results in an error.

Most plug–ins will at least need to free the buffer used to return pixel data
if this has not been done previously.

If Photoshop detects Command–period (Mac OS) or Escape (Windows) while
processing the results of a formatSelectorReadContinue call, it will call the
formatSelectorReadFinish routine. Be careful here, since normally the plug–
in would be expecting another formatSelectorReadContinue call.

Format Modules

Adobe Photoshop Software Development Kit

87

Writing a file

Writing a file involves either two or three distinct sequences, each similar in
structure. When a document is first saved, Photoshop calls your format plug–
in module with the options sequence, followed by the estimate sequence
and the write sequence. After a document has been saved once, each time
the user saves the file again, only the estimate and write sequences are
called.

These sequences are discussed in more detail on the following pages.

Initial Save

Command

format write sequence

format options sequence

Ask user for any file specific in-
formation needed when the
file is created.

format estimate sequence

Calculate the amount of disk
space needed to save the file.

Write image data to the file.

Done.

Adobe Photoshop™ 3.0.4 Acme IFF

Subsequent Save

Commands

Format Modules

Adobe Photoshop Software Development Kit 88

Writing a file (options sequence)

formatSelectorOptionsPrepare
The formatSelectorOptionsPrepare selector call allows your plug–in module
to adjust Photoshop’s memory allocation algorithm. Photoshop sets maxData
to the maximum number of bytes it can allocate to your plug–in. You may
want to reduce maxData for increased efficiency. Refer to chapter 3 for
details on memory management strategies.

formatSelectorOptionsStart
The formatSelectorOptionsStart selector call allows you to determine
whether the current document can be saved in your file format, and if neces-
sary, get any file options from the user.

If you need to examine the image to compute the file size, you can iterate
through the image data (in formatSelectorOptionsContinue) in the same
fashion as is done when writing the file to request sections of the image.

formatSelectorOptionsContinue
If the data field in the FormatRecord is set to NULL in the formatSelectorOp-
tionsStart call, this selector will not be called at all. Otherwise, your plug–in
can request parts of the image from which you determine whether your
plug–in module can store the file. Refer to formatSelectorWriteStart and
formatSelectorWriteContinue on the following page for details.

You may also use the AdvanceStateProc to iterate through the image.

formatSelectorOptionsFinish
Perform any clean up, if necessary.

Initial Save

Command

formatSelectorOptionsContinue

formatSelectorOptionsPrepare

Set memory management
strategy.

formatSelectorOptionsStart

Present dialog to user to get any
file specific information needed
when file is first created.

Examine portion of image to cal-
culate disk space needed. (This
selector may be skipped.)

formatSelectorOptionsFinish

Clean up, if necessary.

Continue to estimate
sequence.

Adobe Photoshop™ 3.0.4 Acme IFF

Loop until error or
theRect is empty.

Format Modules

Adobe Photoshop Software Development Kit 89

Writing a file (estimate sequence)

formatSelectorEstimatePrepare
The formatSelectorWritePrepare selector call allows your plug–in module to
adjust Photoshop’s memory allocation algorithm. Photoshop sets maxData to
the maximum number of bytes it can allocate to your plug–in. You may want
to reduce maxData for increased efficiency. Refer to chapter 3 for details on
memory management strategies.

formatSelectorEstimateStart
Calculate the disk space needed to save the file. If you can calculate the file
size without examining the image data, you can set the minDataBytes and
maxDataBytes fields in the FormatRecord to the approximate size of your
file (due to compression, you may not be able to exactly calculate the final
size), and set data to NULL.

If you need to examine the image to compute the file size, you can iterate
through the image data (in formatSelectorEstimateContinue) in the same
fashion as is done when writing the file to request sections of the image.

formatSelectorEstimateContinue
If the data field in the FormatRecord is set to NULL in the formatSelectorEsti-
mateStart call, this selector will not be called at all. Otherwise, your plug–in
can request parts of the image from which you can compute the minimum
and maximum bytes to store the file. Refer to formatSelectorWriteStart and
formatSelectorWriteContinue on the following page for details.

You may also use the AdvanceStateProc to iterate through the image.

formatSelectorEstimateFinish
Perform any clean up, if necessary.

Subsequent Save

Command

or continued from
options sequence.

formatSelectorEstimateContinue

formatSelectorEstimatePrepare

Calculate memory require-
ments.

formatSelectorEstimateStart

Calculate disk space needed
to save the file, or set up to
examine file.

Examine portion of image to cal-
culate disk space needed. (This
selector may be skipped.)

formatSelectorEstimateFinish

Clean up, if necessary.

Continue to write
sequence.

Adobe Photoshop™ 3.0.4 Acme IFF

Loop until error or
theRect is empty.

Format Modules

Adobe Photoshop Software Development Kit 90

Writing a file (write sequence)

formatSelectorWritePrepare
The formatSelectorWritePrepare selector call allows your plug–in module to
adjust Photoshop’s memory allocation algorithm. Photoshop sets maxData to
the maximum number of bytes it can allocate to your plug–in. You may want
to reduce maxData for increased efficiency. Refer to chapter 3 for details on
memory management strategies.

formatSelectorWriteStart
The formatSelectorReadStart selector call allows your plug–in module to
begin writing the file. On entry, the file to be written is open, and the file
pointer is positioned at the start of the file. You should write any file header
information, such as image resources, to the file.

Your plug–in should then indicate which portion of the image data to
provide for the first formatSelectorWriteContinue call. The area of the
image being requested from the plug–in host is specified by theRect,
loPlane, and hiPlane. The actual pixel data is pointed by data.

You must specify the organization of the data to be returned by the plug–in
host in the colBytes, rowBytes, planeBytes, and planeMap fields. Photoshop
is very flexible in the format in which image data can be delivered to the
plug–in module. Here are two examples:

Loop until error or
theRect is empty.

formatSelectorWriteContinue

formatSelectorWritePrepare

Calculate memory require-
ments.

formatSelectorWriteStart

Allocate buffers for processing
image file.

Write any file header informa-
tion.

Set up request for first portion of
the image.

Write a portion of image.

Set up next request for portion
of image, or at end, write any file
trailer information.

formatSelectorWriteFinish

Clean up.

Done.

Adobe Photoshop™ 3.0.4 Acme IFF

Continued from esti-
mate sequence.

Format Modules

Adobe Photoshop Software Development Kit 91

(1) To return just the red plane of an RGB color image, loPlane and
hiPlane should be set to 0, colBytes should be set to 1, and rowBytes
should be set to the width of the area being returned (planeBytes is
ignored in this case, since loPlane == hiPlane).

(2) To return the RGB data in interleaved form (RGBRGB...), loPlane should
be set to 0, hiPlane to 2, planeBytes to 1, colBytes to 3, and rowBytes
to 3 times the width of area being returned.

formatSelectorWriteContinue
This selector is call repeatedly by the plug–in host to provide your plug–in
module some or all of the image data; your plug–in module should write this
data to file. If successful, set up theRect, loPlane, hiPlane, planeMap, data,
colBytes, rowBytes, and planeBytes to describe the next chunk of the image
being requested.

The host will keep calling your formatSelectorReadContinue handler until
you set theRect to an empty rectangle. Before returning after the last image
data has been written, write any file trailer information to the file.

formatSelectorWriteFinish
The formatSelectorWriteFinish selector allows you to clean–up from the
write operation just performed. This call is made by the plug–in host if and
only if formatSelectorWriteStart returned without error, even if one of the
formatSelectorWriteContinue calls results in an error.

Most plug–ins will at least need to free the buffer used to hold pixel data if
this has not been done previously.

If Photoshop detects Command–period (Mac OS) or Escape (Windows) while
processing the results of a formatSelectorWriteContinue call, it will call the
formatSelectorWriteFinish routine. Be careful here, since normally the plug–
in would be expecting another formatSelectorWriteContinue call.

Image Resources
Photoshop documents can have other properties associated with them
besides pixel data. For example, documents typically contain page setup
information and pen tool paths.

Photoshop supports the concept of a block of data known as the image
resources for a file. Format plug–in modules can store and retrieve this infor-
mation if the file format definition allows for a place to put such an arbi-
trary block of data (e.g., a TIFF tag or a PicComment).

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer.

#define formatBadParameters –30500 // a problem with the module interface
#define formatCannotRead –30501 // a problem interpreting file data

Note:When writing a file, if your plug–in module sets *result to any non–
zero value, then no subsequent selector calls will be made by Photo-
shop. For example, if in your formatSelectorOptionsStart handler, you
determine that the file cannot be saved, then none of the remaining
options, estimate, or write selectors will be called.

Format Modules

Adobe Photoshop Software Development Kit 92

The Format parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to a FormatRecord structure with the following
fields. This structure is declared in PIFormat.h.

Table 9–1: FormatRecord structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Plug–in modules can use this value for
copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the TestAbort
callback. See chapter 3 for more details.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback. This procedure
should only be called during the actual main
operation of the plug–in, not during long
operations during the preliminary user inter-
face. See chapter 3.

int32 maxData Photoshop initializes this field to the maxi-
mum of number of bytes it can free up. The
plug–in may reduce this value during the pre-
pare routines. The continue routines should
process the image in pieces no larger than
maxData less the size of any large tables or
scratch areas it has allocated.

int32 minDataBytes These fields give the limits on the data fork
space needed to write the file. The plug–in
should set these during the estimate sequence
of selector calls.

int32 maxDataBytes

int32 minRsrcBytes These fields give the limits on the resource
fork space needed to write the file. The plug–
in should set these during the estimate
sequence of selector calls.

int32 maxRsrcBytes

int32 dataFork The reference number for the data fork of the
file to be read during the read sequence or
written during the write sequence. During the
options and estimate sequences, this field is
undefined. On Windows, this is the file handle
of the file returned by OpenFile () API.

int32 rsrcFork The reference number for the resource fork of
the file to be read during the read sequence or
written during the write sequence. During the
options and estimate sequences, this field is
undefined. On Windows, this field is unde-
fined.

int16 imageMode The formatSelectorReadStart routine should
set this field to inform Photoshop what mode
image is being acquired (grayscale, RGB Color,
etc.). See the header file for possible values.
Photoshop will set this field before it calls for-
matSelectorOptionsStart, formatSelectorEsti-
mateStart, or formatSelectorWriteStart.

Point imageSize The formatSelectorReadStart routine should
set this field to inform Photoshop of the
image’s width (imageSize.h) and height (imag-
eSize.v) in pixels. Photoshop will set this field
before it calls formatSelectorOptionsStart, for-
matSelectorEstimateStart, or formatSelector-
WriteStart.

Format Modules

Adobe Photoshop Software Development Kit 93

int16 depth The formatSelectorReadStart routine should
set this field to inform Photoshop of the
image’s resolution in bits per pixel per plane.
The only valid settings are 1 for bitmap mode
images, and 8 for all other modes. Photoshop
will set this field before it calls formatSelector-
OptionsStart, formatSelectorEstimateStart, or
formatSelectorWriteStart.

int16 planes The formatSelectorReadStart routine should
set this field to inform Photoshop of the num-
ber of channels in the image. For example, if
an RGB image without alpha channels is being
returned, this field should be set to 3. Photo-
shop will set this field before it calls formatSe-
lectorOptionsStart,
formatSelectorEstimateStart, or formatSelec-
torWriteStart. Because of the implementation
of the plane map, format modules (and
acquire modules) should never try to work
with more than 16 planes at a time. The
results would be unpredictable.

Fixed imageHRes The formatSelectorReadStart routine should
set these fields to inform Photoshop of the
image’s horizontal and vertical resolution in
terms of pixels per inch. This is a fixed point
number (16 binary digits). Photoshop initial-
izes these fields to 72 pixels per inch. Photo-
shop will set these fields before it calls
formatSelectorOptionsStart, formatSelectorEs-
timateStart, or formatSelectorWriteStart. The
current version of Photoshop only supports
square pixels, so it ignores the imageVRes
field. Plug–ins should set both fields anyway in
case future versions of Photoshop support
non–square pixels.

Fixed imageVRes

LookUpTable redLUT If an indexed color mode image is being
returned, the formatSelectorReadStart rou-
tine should return the image’s color table in
these fields. If an indexed color document is
being written, Photoshop will set these fields
before it calls formatSelectorOptionsStart, for-
matSelectorEstimateStart, or formatSelector-
WriteStart.

LookUpTable greenLUT

LookUpTable blueLUT

void * data The start and continue routines should return
a pointer to the buffer where image data is or
is to be stored in this field. After the entire
image has been processed, the continue selec-
tors should set this field to NULL. Note that the
plug–in is responsible for freeing any memory
pointed to by this field.

Rect theRect The plug–in should set this to the area of the
image covered by the buffer specified in data.

int16 loPlane The start and continue routines should set this
to the first and last planes covered by the
buffer specified in data. For example, if inter-
leaved RGB data is being used, they should be
set to 0 and 2, respectively.

int16 hiPlane

int16 colBytes The start and continue routines should set this
field to the offset in bytes between columns of
data in the buffer. This is usually 1 for non–
interleaved data, or (hiPlane – loPlane + 1) for
interleaved data.

Table 9–1: FormatRecord structure (Continued)

Type Field Description

Format Modules

Adobe Photoshop Software Development Kit 94

int32 rowBytes The start and continue routines should set this
field to the offset in bytes between rows of
data in the buffer.

int32 planeBytes The start and continue routines should set this
field to the offset in bytes between planes of
data in the buffers. This field is ignored if
loPlane = hiPlane. It should be set to 1 for
interleaved data.

PlaneMap

(array of 16
int16’s)

planeMap This is initialized by the host to a linear map
(planeMap [i] = i). This is used to map plane
(channel) numbers between the plug–in and
the host. For example, Photoshop stores RGB
images with an alpha channel in the order
RGBA, whereas most frame buffers store the
data in ARGB order. To work with the data in
this order, the plug–in should set planeMap [0]
to 3, planeMap [1] to 0, planeMap [2] to 1,
and planeMap [3] to 2.

Boolean canTranspose If the host supports transposing images during
or after reading or before or during writing, it
should set this field to TRUE. Photoshop always
sets this field to TRUE.

Boolean needTranspose Initialized by the host to FALSE. If the plug–in
wishes to have the image transposed, and
canTranspose is TRUE, it should set this field to
TRUE during the start call.

OSType hostSig The plug–in host provides its signature to your
plug–in module in this field. Photoshop’s sig-
nature is '8BIM'.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should ver-
ify hostSig before calling this procedure. This
provides a mechanism for hosts to extend the
plug–in interface to support application spe-
cific features.

int16 hostModes This field is used by the host to inform the
plug–in which imageMode values it supports.
If the corresponding bit (LSB = bit 0) is 1, the
mode is supported. This field can be used by
plug–ins to disable reading unsupported file
formats.

Table 9–1: FormatRecord structure (Continued)

Type Field Description

Format Modules

Adobe Photoshop Software Development Kit 95

Handle revertInfo This field is set to NULL by Photoshop when a
format for a file is first created. If this field is
defined on a formatSelectorReadStart call,
then treat the call as a revert and don’t query
the user. If it is NULL on the formatSelector-
ReadStart call, then query the user as appro-
priate and set up this field to store a handle
containing the information necessary to read
the file without querying the user for addi-
tional parameters (essential for reverting the
file) and if possible to write the file without
querying the user. The contents of this field
are sticky to a document and will be dupli-
cated when we duplicate the image format
information for a document. On all formatSe-
lectorOptions calls, leave revertInfo containing
enough information to revert the document.

Photoshop will dispose of this field when it
disposes of the document, hence, the plug–in
must call on Photoshop to allocate the data as
well using the following callbacks or the call-
backs provided in the handle suite.

NewPIHandleProc hostNewHdl This is the same as the NewPIHandle callback
described in chapter 3. This field existed
before the handle suite was defined.

DisposePIHan-
dleProc

hostDisposeHdl This is the same as the DisposePIHandle call-
back described in chapter 3. This field existed
before the handle suite was defined.

Handle imageRsrcData During calls to the write sequence, this field
contains a handle to a block of data to be
stored in the file as image resource data. Since
this handle is allocated before the write
sequence begins, plug–ins must add any
resources they want saved to the document
during the options or estimate sequence. Since
options is not always called, the best time is
during the estimate sequence. During the read
sequence, Photoshop checks this field after
each call to formatSelectorRead and formatSe-
lectorContinue and the first time it is non–NULL
parses the handle as a block of image resource
data for the current document.

int32 imageRsrcSize This is the size of the handle in imageRsrc-
Data. It is really only relevant during the esti-
mate sequence when it is provided instead of
the actual resource data.

PlugInMonitor monitor This field contains the monitor setup informa-
tion for the host. See Appendix A for more
details.

void * platformData This field contains a pointer to platform spe-
cific data. Not used on the Macintosh.

BufferProcs * bufferProcs This field contains a pointer to the buffer suite
if it is supported by the host, otherwise NULL.

ResourceProcs * resourceProcs This field contains a pointer to the pseudo–
resource suite if it is supported by the host,
otherwise NULL.

ProcessEventProc processEvent This field contains a pointer to the ProcessEv-
ent callback documented in chapter 3. It con-
tains NULL if the callback is not supported.

Table 9–1: FormatRecord structure (Continued)

Type Field Description

Format Modules

Adobe Photoshop Software Development Kit 96

DisplayPixelsProc displayPixels This field contains a pointer to the DisplayPix-
els callback documented in chapter 3. It con-
tains NULL if the callback is not supported.

HandleProcs handleProcs This field contains a pointer to the handle
suite if it is supported by the host, otherwise
NULL.

These fields are new in version 3.0 of Adobe Photoshop.

OSType fileType This field contains the file type for filtering.

ColorServicesProc colorServices This field contains a pointer to the ColorSer-
vices callback documented in chapter 3. It con-
tains NULL if the callback is not supported.

AdvanceStateProc advanceState The advanceState callback allows you to drive
the interaction through the inner (formatSe-
lectorOptionsContinue) loop without actually
returning from the plug–in. If it returns an
error, then the plug–in generally should treat
this as an error formatSelectorOptionsCon-
tinue and pass it on when it returns. For more
information, see chapter 3.

These fields are new in version 3.0.4 of Adobe Photoshop.

PropertyProcs * propertyProcs A pointer to the property callback suite. See
chapter 3 for details.

int16 tileWidth The width of the tiles. Zero if not set.

int16 tileHeight The height of the tiles. Zero if not set.

int16 tileOrigin The origin point for the tiles.

char[220] reserved Set to zero by the host for future expansion of
the plug–in standard. Must not be used by
plug–ins.

Table 9–1: FormatRecord structure (Continued)

Type Field Description

10

Document File Formats

Adobe Photoshop Software Development Kit

97

Adobe Photoshop saves a user’s document in one of several formats, which
are listed under the pop–up menu in the “Save” dialog. This chapter docu-
ments these standard formats.

The formats discussed in this chapter include Photoshop 3.0 native format,
Photoshop EPS format, Filmstrip format, and TIFF format.

For more information about file formats, you may wish to consult the

Ency-
clopedia of Graphics File Formats

 by James D. Murray & William vanRyper
(1994, O’Reilly & Associates, Inc., Sebastopol, CA ISBN 1–56592–058–9).

Document File Formats

Adobe Photoshop Software Development Kit

98

Image resource blocks

Image resource blocks are the basic building unit of several file formats,
including Photoshop’s native file format, JPEG, and TIFF. Image resources are
used to store non–pixel data associated with an image, such as pen tool
paths. (They are referred to as resource data because they hold data that
was stored in the Macintosh’s resource fork in early versions of Photoshop.)

The basic structure of Image Resource Blocks is shown in table 10–1.

Image resources use several standard ID numbers, as shown in table 10–2.
Not all file formats use all ID’s. Some information may be stored in other
sections of the file.

Table 10–1: Image resource block

Type Name Description

OSType Type Photoshop always uses its signature, '8BIM'

int16 ID Unique identifier (see table 10–2).

PString Name A pascal string, padded to make size even (a null name
consists of two bytes of 0)

int32 Size Actual size of resource data. This does not include the
Type, ID, Name, or Size fields.

Variable Data Resource data, padded to make size even

Table 10–2: Image resource ID’s

ID Description

0x03E8 (1000) Obsolete—Photoshop 2.0 only. Contains five int16 values:
number of channels, rows, columns, depth, and mode.

0x03E9 (1001) Optional. Macintosh print manager print info record.

0x03EB (1003) Obsolete—Photoshop 2.0 only. Contains the indexed color
table.

0x03ED (1005) Resolution information. See appendix A for description of
the ResolutionInfo structure.

0x03EE (1006) Names of the alpha channels as a series of Pascal strings.

0x03EF (1007) Display information for each channel. See appendix A for a
description of the DisplayInfo structure.

0x03F0 (1008) Optional. The caption as a Pascal string.

0x03F1 (1009) Border information. Contains a Fixed number for the bor-
der width, and an int16 for border units (1=inches, 2=cm,
3=points, 4=picas, 5=columns).

0x03F2 (1010) Background color. See the Colors file information in chap-
ter 11.

0x03F3 (1011) Print flags. A series of one byte boolean values (see Page
Setup dialog): labels, crop marks, color bars, registration
marks, negative, flip, interpolate, caption.

0x03F4 (1012) Grayscale and multichannel halftoning information.

0x03F5 (1013) Color halftoning information.

0x03F6 (1014) Duotone halftoning information.

0x03F7 (1015) Grayscale and multichannel transfer function.

Document File Formats

Adobe Photoshop Software Development Kit

99

0x03F8 (1016) Color transfer functions.

0x03F9 (1017) Duotone transfer functions.

0x03FA (1018) Duotone image information.

0x03FB (1019) Two bytes for the effective black and white values for the
dot range.

0x03FC (1020) Obsolete.

0x03FD (1021) EPS options.

0x03FE (1022) Quick Mask information. 2 bytes containing Quick Mask
channel ID, 1 byte boolean indicating whether the mask
was initially empty.

0x03FF (1023) Obsolete.

0x0400 (1024) Layer state information. 2 bytes containing the index of
target layer. 0=bottom layer.

0x0401 (1025) Working path (not saved). See path resource format later
in this chapter.

0x0402 (1026) Layers group information. 2 bytes per layer containing a
group ID for the dragging groups. Layers in a group have
the same group ID.

0x0403 (1027) Obsolete.

0x0404 (1028) IPTC-NAA record. This contains the File Info... information.

0x0405 (1029) Image mode for raw format files.

0x0406 (1030) JPEG quality. Private.

0x07D0–0x0BB6 (2000–2998) Path Information (saved paths)

0x0BB7 (2999) Name of clipping path

0x2710 (10000) Print flags information. 2 bytes version (= 1), 1 byte center
crop marks, 1 byte (always zero), 4 bytes bleed width
value, 2 bytes bleed width scale.

Table 10–2: Image resource ID’s

ID Description

Document File Formats

Adobe Photoshop Software Development Kit

100

Path resource format

Photoshop stores the paths saved with an image in an image resource block.
These resource blocks consist of a series of 26 byte path point records, and so
the resource length should always be a multiple of 26.

Photoshop stores its paths as resources of type '8BIM' with IDs in the range
2000 through 2999. These numbers should be reserved for Photoshop. The
name of the resource is the name given to the path when it was saved.

If the file contains a resource of type '8BIM' with an ID of 2999, then this
resource contains a Pascal–style string containing the name of the clipping
path to use with this image when saving it as an EPS file.

The path format returned by GetProperty () call is identical to what is
described below. Refer to the “Paths To Illustrator” sample plug–in code to
see how this resource data is constructed.

Path points

All points used in defining a path are stored in eight bytes as a pair of 32–bit
components, vertical component first.

The two components are signed, fixed point numbers with 8 bits before the
binary point and 24 bits after the binary point. Three guard bits are reserved
in the points to eliminate most concerns over arithmetic overflow. Hence,
the range for each component is 0xF0000000 to 0x0FFFFFFF representing a
range of –16 to 16. The lower bound is included, but not the upper bound.

This limited range is used because the points are expressed relative to the
image size. The vertical component is given with respect to the image
height, and the horizontal component is given with respect to the image
width. <0,0> represents the top–left corner of the image; <1,1>
(<0x01000000,0x01000000>) represents the bottom–right.

On Intel processors (Windows), the byte order of the path point components
are reversed; you should swap the bytes when accessing each 32–bit value.

Path records

The data in a path resource consists of one or more 26 byte records. The first
two bytes of each record is a selector to indicate what kind of path data
record it is. Under Windows, you should swap the bytes before accessing it as
a short (int16).

Table 10–3: Path data record types

Selector Description

0 Closed subpath length record

1 Closed subpath Bezier knot, linked

2 Closed subpath Bezier knot, unlinked

3 Open subpath length record

4 Open subpath Bezier knot, linked

5 Open subpath Bezier knot, unlinked

6 Path fill rule record

7 Clipboard record

Document File Formats

Adobe Photoshop Software Development Kit

101

The first 26 byte path record contains a selector value of 6 (path fill rule
record), the remaining 24 bytes of the first record are all zeroes which indi-
cates that paths use even/odd rule. Subpath length records (selector value 0
or 3) contain the number of Bezier knot records in bytes 2 and 3. The
remaining 22 bytes are unused, and should be zeroes. Each length record is
then immediately followed by the Bezier knot records describing the knots
of the subpath.

In Bezier knot records, the 24 bytes following the selector field contain three
path points (described above) for:

(1) the control point for the Bezier segment preceding the knot,

(2) the anchor point for the knot, and

(3) the control point for the Bezier segment leaving the knot.

Linked knots have their control points linked; editing one point edits the
other one to preserve collinearity. Knots should only be marked as having
linked controls if their control points are collinear with their anchor. The
control points on unlinked knots are independent of each other. Refer to the
Adobe Photoshop User Guide for more information.

Clipboard records, selector = 7, contain four Fixed point numbers for the
bounding rectangle (top, left, bottom, right), and a single Fixed point
number indicating the resolution.

Document File Formats

Adobe Photoshop Software Development Kit

102

Photoshop 3.0 files

Macintosh file type: '8BPS'
Windows file extension:.PSD

This is the native file format for Adobe Photoshop 3.0. It supports storing all
layer information.

Photoshop 3.0 files under Windows

All data is stored in big endian byte order; under Windows you must byte
swap short and long integers when reading or writing.

Photoshop 3.0 files under Mac OS

For cross–platform compatibility, all information needed by Adobe Photo-
shop 3.0 is stored in the data fork. For interoperability with other Macintosh
applications, however, some information is duplicated in resources stored in
the resource fork of the file.

For compatibility with Adobe Fetch, a 'pnot' 0 resource contains references
to thumbnail, keywords, and caption information stored in other resources.
The thumbnail picture is stored in a 'PICT' resource, the keywords are stored
in a 'STR#' 128 resource and the caption text is stored in a 'TEXT' 128
resource. For more information on the format of these resources see

Inside
Macintosh: QuickTime Components

and the

Adobe Fetch Awareness Devel-
oper’s Toolkit.

All of the data from Photoshop’s File Info dialog is stored in an 'ANPA'
10000 resource. The data in this resource is stored as an IPTC–NAA record 2
and should be readable by various tools from Iron Mike. For more informa-
tion on the format of this resource contact:

IPTC–NAA Digital Newsphoto Parameter Record
Newspaper Association of America
The Newspaper Center
11600 Sunrise Valley Drive
Reston VA 20091

Photoshop also creates 'icl8' –16455 and 'ICN#' –16455 resources containing
thumbnail images which will be shown in the Finder.

Document File Formats

Adobe Photoshop Software Development Kit

103

Photoshop 3.0 file format

The file format for Photoshop 3.0 is divided into five major parts.

The file header is fixed length, the other four sections are variable in length.

When writing one of these sections, you should write all fields in the section,
as Photoshop may try to read the entire section. Whenever writing a file and
skipping bytes, you should explicitly write zeros for the skipped fields.

When reading one of the length delimited sections, use the length field to
decide when you should stop reading. In most cases, the length field indi-
cates the number of bytes, not records following.

File header section

The file header contains the basic properties of the image.

Table 10–4: File header

Length Name Description

4 bytes Signature Always equal to '8BPS'. Do not try to read the file if the
signature does not match this value.

2 bytes Version Always equal to 1. Do not try to read the file if the ver-
sion does not match this value.

6 bytes Reserved Must be zero.

2 bytes Channels The number of channels in the image, including any
alpha channels. Supported range is 1 to 24.

4 bytes Rows The height of the image in pixels. Supported range is 1
to 30,000.

File Header

Color Mode Data

Image Resources

Layer and Mask

Image Data

Information

Document File Formats

Adobe Photoshop Software Development Kit

104

Color mode data section

Only indexed color and duotone have color mode data. For all other modes,
this section is just 4 bytes: the length field, which is set to zero.

For indexed color images, the length will be equal to 768, and the color data
will contain the color table for the image, in non–interleaved order.

For duotone images, the color data will contain the duotone specification,
the format of which is not documented. Other applications that read Photo-
shop files can treat a duotone image as a grayscale image, and just preserve
the contents of the duotone information when reading and writing the file.

Image resources section

The third section of the file contains image resources. As with the color
mode data, the section is indicated by a length field followed by the data.
The image resources in this data area are described in detail earlier in this
chapter.

Layer and mask information section

The fourth section contains information about Photoshop 3.0 layers and
masks. The formats of these records are discussed later in this chapter. If

4 bytes Columns The width of the image in pixels. Supported range is 1
to 30,000.

2 bytes Depth The number of bits per channel. Supported values are 1,
8, and 16.

2 bytes Mode The color mode of the file.

Supported values are:

Bitmap = 0
Grayscale = 1
Indexed Color = 2
RGB Color = 3
CMYK Color = 4
Multichannel = 7
Duotone = 8
Lab Color = 9

Table 10–5: Color mode data

Length Name Description

4 bytes Length The length of the following color data.

Variable Color data The color data.

Table 10–6: Image resources

Length Name Description

4 bytes Length Length of image resource section.

Variable Resources Image resources.

Table 10–4: File header (Continued)

Length Name Description

Document File Formats

Adobe Photoshop Software Development Kit

105

there are no layers or masks, this section is just 4 bytes: the length field,
which is set to zero.

Image data section

The image pixel data is the last section of a Photoshop 3.0 file. Image data is
stored in planar order, first all the red data, then all the green data, etc.
Each plane is stored in scanline order, with no pad bytes.

If the compression code is 0, the image data is just the raw image data.

If the compression code is 1, the image data starts with the byte counts for
all the scan lines (rows * channels), with each count stored as a two–byte
value. The RLE compressed data follows, with each scan line compressed
separately. The RLE compression is the same compression algorithm used by
the Macintosh ROM routine PackBits, and the TIFF standard.

Table 10–7: Layer and mask information

Length Name Description

4 bytes Length Length of the miscellaneous information section.

Variable Layers Layer info. See table 10–10.

Variable Masks One or more layer mask info structures. See table 10–13.

Table 10–8: Image data

Length Name Description

2 bytes Compression Compression method.

Raw data = 0, RLE compressed = 1.

Variable Data The image data.

Document File Formats

Adobe Photoshop Software Development Kit

106

Layer and mask records

Information about each layer and mask in a document is stored in the fourth
section of the file. The complete, merged image data is not stored here; it
resides in the last section of the file.

The first part of this section of the file contains layer information, which is
divided into layer structures and layer pixel data, as shown in table 10–9. The
second part of this section contains layer mask data, which is described in
table 10–16.

Table 10–9: Layer info section

Length Name Description

4 bytes Length Length of the layers info section, rounded
up to a multiple of 2.

Variable Layers structure Data about each layer in the document. See
table 10–10.

Variable Pixel data Channel image data for each channel in the
order listed in the layers structure section.
See table 10–15.

Table 10–10: Layer structure

Length Name Description

2 bytes Count Number of layers. If <0, then number of lay-
ers is absolute value, and the first alpha
channel contains the transparency data for
the merged result.

Variable Layer Information about each layer (table 10–11).

Table 10–11: Layer records

Length Name Description

4 bytes Layer top The rectangle containing the contents of the
layer.

4 bytes Layer left

4 bytes Layer bottom

4 bytes Layer right

2 bytes Number channels The number of channels in the layer.

Variable Channel length info Channel information. This contains a six byte
record for each channel. See table 10–12.

4 bytes Blend mode signature Always ‘8BIM’.

Document File Formats

Adobe Photoshop Software Development Kit

107

4 bytes Blend mode key 'norm' = normal
'dark' = darken
'lite' = lighten
'hue ' = hue
'sat ' = saturation
'colr' = color
'lum ' = luminosity
'mul ' = multiply
'scrn' = screen
'diss' = dissolve
'over' = overlay
'hLit' = hard light
'sLit' = soft light
'diff' = difference

1 byte Opacity 0 = transparent ... 255 = opaque

1 byte Clipping 0 = base, 1 = non–base

1 byte Flags bit0: transparency protected

bit1: visible

1 byte (filler) (zero)

4 bytes Extra data size Length of the extra data field. This is the
total length of the next five fields.

24 bytes, or
4 bytes if no
layer mask.

Layer mask data See table 10–13.

Variable Layer blending ranges See table 10–14.

Variable Layer name Pascal string, padded to a multiple of 4
bytes.

Table 10–12: Channel length info

Length Name Description

2 bytes Channel ID 0 = red, 1 = green, etc.
–1 = transparency mask
–2 = user supplied layer mask

4 bytes Length Length of following channel data.

Table 10–13: Layer mask data

Length Name Description

4 bytes Size Size of layer mask data. This will be either
0x14, or zero (in which case the following
fields are not present).

4 bytes Top Rectangle enclosing layer mask.

4 bytes Left

4 bytes Bottom

4 bytes Right

Table 10–11: Layer records (Continued)

Length Name Description

Document File Formats

Adobe Photoshop Software Development Kit

108

1 byte Default color 0 or 255

1 byte Flags bit 0: position relative to layer

bit 1: layer mask disabled

bit 2: invert layer mask when blending

2 bytes Padding Zeros

Table 10–14: Layer blending ranges data

Length Name Description

4 bytes Length Length of layer blending ranges data

4 bytes Composite gray blend
source

Contains 2 black values followed by 2 white
values.

Present but irrelevant for Lab & Grayscale.

4 bytes Composite gray blend desti-
nation

Destination Range

4 bytes First channel source range

4 bytes First channel destination
range

4 bytes Second channel source
range

4 bytes Second channel destination
range

...

4 bytes Nth channel source range

4 bytes Nth channel destination
range

Table 10–15: Channel image data

Length Name Description

2 bytes Compression 0 = Raw Data, 1 = RLE compressed.

Variable Image data If the compression code is 0, the image data
is just the raw image data calculated as
((Layer Bottom – Layer Top) * (Layer Right –
Layer Left)). If the compression code is 1, the
image data starts with the byte counts for
all the scan lines in the channel (Layer Bot-
tom – Layer Top), with each count stored as
a two–byte value. The RLE compressed data
follows, with each scan line compressed sep-
arately. The RLE compression is the same
compression algorithm used by the Macin-
tosh ROM routine PackBits, and the TIFF
standard.

If the data since the Layers Size is odd, a pad
byte will be inserted.

Table 10–13: Layer mask data

Length Name Description

Document File Formats

Adobe Photoshop Software Development Kit

109

Table 10–16: Layer mask data

Length Name Description

2 bytes Overlay color space

8 bytes Color components 4 * 2 byte color components

2 bytes Opacity 0 = transparent, 100 = opaque.

1 byte Kind 0 = Color selected—i.e. inverted

1 = Color protected

128 = use value stored per layer. This value is
preferred. The others are for backward com-
patibility with beta versions.

1 byte (filler) (zero)

Document File Formats

Adobe Photoshop Software Development Kit

110

Photoshop EPS files

Photoshop 3.0 writes a high–resolution bounding box comment to the EPS
file immediately following the traditional EPS bounding box comment. The
comment begins with “%%HiResBoundingBox” and is followed by four
numbers identical to those given for the bounding box except that they can
have fractional components (i.e., a decimal point and digits after it). The
traditional bounding box is written as the rounded version of the high reso-
lution bounding box for compatibility.

Photoshop writes its image resources out to a block of data stored as
follows:

%BeginPhotoshop: <length> <hex data>

<length> is the length of the image resource data.

<hex data> is the image resource data in hexadecimal.

Photoshop includes a comment in the EPS files it writes so that it is able to
read them back in again. Third party programs that write pixel–based EPS
files may want to include this comment in their EPS files, so Photoshop can
read their files.

The comment must follow immediately after the %% comment block at the
start of the file. The comment is:

%ImageData: <columns> <rows> <depth> <mode> <pad channels> <block size>
<binary/hex> "<data start>"

<columns> is the width of the image in pixels.

<rows> is the height of the image in pixels.

<depth> is the number of bits per channel. Must be 1 or 8.

<mode> is the image mode. 1 for bitmap and gray scale images (determined
by depth), 2 for Lab images, 3 for RGB images, and 4 for CMYK images.

<pad channels> is the number of other channels stored in the file, which are
ignored when reading. (Photoshop uses this to include a gray scale image
that is printed on non–color PostScript printers).

<block size> is the number of bytes per row per channel. This will be equal
to (<columns> * <depth> + 7) / 8 if the data is stored in line–interleave
format (or if there is only one channel), or equal to 1 of the data is inter-
leaved.

<binary/hex> is 1 if the data is in binary format, and 2 if the data is in hex
format.

<data start> contains the entire PostScript line immediately preceding the
image data. (This entire line should not occur elsewhere in the PostScript
header code, but it may occur at part of a line.)

Document File Formats

Adobe Photoshop Software Development Kit

111

Filmstrip files

Adobe Premiere 2.0 supports the filmstrip file format. Premiere users can
export any video clip as a filmstrip. Refer to the

Adobe Premiere User Guide

for more information.

Adobe Photoshop 3.0 supports the filmstrip file type to allow each frame to
be individually painted. The filmstrip file format is fairly simple, and is
described in this section.

A filmstrip consists of a sequence of equal sized 32–bit images, known as
frames. The channel order in the file is Red, Green, Blue, Alpha.

After each frame is an arbitrarily sized leader area, in which any type of
information may be embedded. Adobe Premiere puts the timecode and
frame number for the frame in this area. This area is ignored by Premiere
when the file is read.

Following all the frames is a 16 row trailer frame (it has the same width as
the other frames). Adobe Premiere writes a yellow and black diagonal
pattern in this area. The lower right corner of this area is actually an infor-
mation record that exists at the very end of the file. This record is located by
seeking to the end of the file minus the size of the record, then reading the
record and verifying the signature field that it contains.

// Definition for filmstrip info record

typedef struct {

long signature; // 'Rand'

long numFrames; // number of frames in file

short packing; // packing method

short reserved; // reserved, should be 0

short width; // image width

short height; // image height

short leading; // horiz gap between frames

short framesPerSec;// frame rate

char spare[16]; // some spare data.

} FilmStripRec, **FilmStripHand;

To locate the filmstrip info record, seek to the end of the file minus
(sizeof(FilmStripRec)), then read in the FilmStrip record. Check the signature
field for the code 'Rand' to test for validity.

Table 10–17: FilmStripRec structure

Type Field Description

long signature This field must be set to the code 'Rand' and is used to verify
the validity of the record.

long numFrames This is the total number of frames in the file.

short packing This is the packing method used, currently only a value of 0
is defined, for no packing.

short width The width of each image, in pixels.

short height The height of each image, in pixels.

short leading The height of the leading areas, in pixels.

short framesPerSec The rate at which the frames should be played.

Document File Formats

Adobe Photoshop Software Development Kit

112

To locate the data for a particular frame, seek to (frame * width *
(height+leading) * 4), then read (width * height * 4) bytes. If the data is
being placed into a GWorld (Mac OS), the channels must be re–arranged
from Red–Green–Blue–Alpha to Alpha–Red–Green–Blue.

To write a FilmStrip file, write each frame sequentially into the file,
including the leading areas. Then write a block of ((width * (height+leading)
* 4) – sizeof(FilmStripRec)) bytes. Finally, fill in and write the FilmStrip record
to the file.

Note: The packing field should currently be zero. In the future packing
methods may be defined for filmstrips, so any software which reads film-
strips should examine this field before opening the file.

Document File Formats

Adobe Photoshop Software Development Kit 113

TIFF files

The same image resources information found in Photoshop 3.0 files are
stored in TIFF files under tag number 34377 (see Image Resource Blocks and
Image Resources earlier in this chapter).

For TIFF files the caption data is stored in an image description tag 270 and
all the information is stored as an IPTC–NAA record 2 in tag 33723. The tag
number was chosen by inspecting files written by Iron Mike software, and is
supposed to be defined in a Rich TIFF specification. The tag is also specified
in:

NSK TIFF
The Japan Newspaper Publishers & Editors Association
Nippon Press Center Building
2–2–1 Uchlsaiwai–cho
Chiyoda–ku, Tokyo 100

For more information about the TIFF format see:

TIFF Revision 6.0
(206) 628–5693

In reading the files, the following order is used with information read lower
on the list replacing information read higher.

Image Description Tag (TIFF only)
IPTC–NAA Tag (TIFF only)

It is a bug that the TIFF information comes prior to the image resource infor-
mation on this list. This means that an edit to the TIFF info will not be recog-
nized unless the image resource information is removed. The TIFF data may
be moved to after the image resource information in a future version of
Photoshop.

Table 10–16 describes the standard TIFF tags and tag values that Photoshop
3.0 is able to read and write.

TIFF files under Mac OS
For cross–platform compatibility, all TIFF information is stored in the data
fork. For interoperability with other Macintosh applications, however, some
information is duplicated in resources stored in the resource fork of the file.

For compatibility with Adobe Fetch, a 'pnot' 0 resource contains references
to thumbnail, keywords, and caption information stored in other resources.
The thumbnail picture is stored in a 'PICT' resource, the keywords are stored
in a 'STR#' 128 resource and the caption text is stored in a 'TEXT' 128
resource. For more information on the format of these resources see Inside
Macintosh: QuickTime Components and the Adobe Fetch Awareness Devel-
oper’s Toolkit.

All of the data from Photoshop’s File Info dialog is stored in an 'ANPA'
10000 resource. The TIFF file also contains a 'STR ' -16396 resource that
contains the string “Adobe Photoshop 3.0” which indicates the application
that created the TIFF file.

Photoshop also creates 'icl8' –16455 and 'ICN#' –16455 resources containing
thumbnail images which will be shown in the Finder.

Document File Formats

Adobe Photoshop Software Development Kit 114

Table 10–18: TIFF Tags

Tag Photoshop reads Photoshop writes

IFD First IFD in file Only one IFD per file

NewSubFileType Ignored 0

ImageWidth 1 to 30000 1 to 30000

ImageLength 1 to 30000 1 to 30000

BitsPerSample 1, 2, 4, 8, 16 (all same) 1, 8, 16

Compression 1, 2, 5, 32773 1, 5

PhotometricInterpretation 0, 1, 2, 3, 5, 8 0 (1–bit), 1 (8–bit), 2, 3,5,8

FillOrder 1 No

ImageDescription Printing Caption Printing Caption

StripOffsets Yes Yes

SamplesPerPixel 1 to 24 1 to 24

RowsPerStrip Any Single strip if not com-
pressed, multiple strips if
compressed.

StripByteCounts Required if compressed Yes

XResolution Yes Yes

YResolution Ignored (square pixels
assumed)

Yes

PlanarConfiguration 1 or 2 1

ResolutionUnit 2 or 3 2

Predictor 1 or 2 1 or 2

ColorMap Yes Yes

TileWidth Yes No

TileLength Yes No

TileOffsets Yes No

TileByteCounts Required if compressed No

InkSet 1 No

DotRange Yes, if CMYK Yes

ExtraSamples Ignored (except for count) 0

11

Load File Formats

Adobe Photoshop Software Development Kit

115

Besides documents that the user creates in Adobe Photoshop (discussed in
chapter 10), there are a number of other files used by Photoshop to store
information about colors, brushes, etc. These can be saved to files and
loaded into Photoshop at a later time, even for use in a different image.
These are referred to generically as “load files”.

Each load file has a unique file type and file extension associated with it.
Photoshop for Macintosh will recognize either, but does not require the use
of the extension. Photoshop for Windows will look for the given file exten-
sion automatically; this can be overridden.

Many, but not all, of the files have version numbers written as short integers
in the first two bytes of the file.

On the Macintosh, all information is stored in the data forks of Photoshop’s
load files. The files are completely interchangable with Photoshop for
Windows or any other platform.

Note that this requires consistent byte ordering between the all platforms
when reading and writing these files. Photoshop stores multi–byte values
with the high–order bytes first (big–endian, used on 680x0 systems), the
reverse of the way this is done on Intel platforms (little–endian).

Load File Formats

Adobe Photoshop Software Development Kit

116

Arbitrary Map

Macintosh file type: '8BLT'
Windows file extension:.AMP

Arbitrary Map files are loaded and saved in Photoshop’s Curves dialog.

There is no version number written in the file. The file must be an even
multiple of 256 bytes long.

Each 256 bytes is a lookup table, where the first byte corresponds to zero in
the image data and the last byte to 255 in the image data. A “null” table
that has no effect on an image is a linear table of bytes from 0 to 255.

If there is one table in the file, Photoshop applies it to the master composite
channel, if the image has one, or to the single active channel if there is only
one. If there is no composite channel, but more than one active channel, the
load operation will have no effect. If the file has exactly three tables then it
is assumed to represent an RGB lookup table and they are applied to the
first channels in the image (the master composite map is untouched). If there
is a single active channel, then the RGB lookup table is converted to gray-
scale and the result is applied to the active channel. In any other case, the
first map is treated as a master and the remainder are applied to the image
channels in turn (i.e. the second map is associated with the first channel, the
third map with the second channel, etc.)

Photoshop handles single active channels in a special fashion. When saving
the map applied to a single channel, only one map is written to the file.
Similarly, when reading a map file for application to a single active channel,
the master map is the one that will be used on that channel. This allows easy
application of a single file to both composite and Grayscale images.

Load File Formats

Adobe Photoshop Software Development Kit

117

Brushes

Macintosh file type: '8BBR'
Windows file extension:.ABR

Brushes settings files are loaded and saved in Photoshop’s Brushes palette.
These are typically stored in the “Goodies:Brushes & Patterns” sub–folder
(Mac OS), or BRUSHES sub–directory (Windows).

1. Version (2 bytes)

Equal to 1, written as a short integer.

2. Count (2 bytes)

A short integer indicating how many brushes are in the remainder of the
file.

3. Brushes (variable)

Two types of brushes are currently supported: elliptical, computed brushes
and sampled brushes. Computed brushes are created with the New Brush
command; sampled brushes are created from selected image data using the
Define Brush command.

Each brush contains the following components:

a. type (2 bytes)

A short integer indicating the type of brush. A value of 1 means a computed
brush, a value of 2 means a sampled brush. Other values are currently unde-
fined.

b. size (4 bytes)

A long integer indicating the number of bytes in the remainder of the brush
definition. Photoshop uses this information to skip over brush types that it
doesn’t understand.

c. data (size bytes)

The contents depend on the type of brush. Computed brush data is always
14 bytes; sampled brush data varies in size depending on the image data
that makes up the brush tip.

Computed brushes:

i. miscellaneous (4 bytes): a long value which is ignored.

ii. spacing (2 bytes): a short integer ranging from 0 to 999 (0 means no
spacing)

iii. diameter (2 bytes): a short integer ranging from 1 to 999

iv. roundness (2 bytes): a short integer ranging from 0 to 100

v. angle (2 bytes): a short integer ranging from –180 to 180

vi. hardness (2 bytes): a short integer ranging from 0 to 100

Sampled brushes:

i. miscellaneous (4 bytes): a long value which is ignored.

ii. spacing (2 bytes): a short integer ranging from 0 to 999 (0 means no
spacing)

iii. anti–aliasing (1 byte): indicates whether the brush is to be anti–aliased
when applied; 0 means no anti–aliasing. (Note that brushes with

Load File Formats

Adobe Photoshop Software Development Kit

118

sampled data size either taller or wider than 32 pixels will not be anti–
aliased by Photoshop in any event.)

iv. bounds (8 bytes): a rectangle, four short integers giving the bounds of
the sampled tip data (in the order top, left, bottom, right)

v. bounds2 (16 bytes): a rectangle, exactly repeating the previous bounds
entry, but in four long integers instead of four short integers.

vi. depth (2 bytes): depth of the sampled data, which is always 8

vii. image data (variable): if the bounds are taller than 16384, the data is
broken into 16384–line chunks. Each chunk is streamed as follows:

a. compression (2 bytes): two values are currently
defined: 0 = Raw Data, 1 = RLE compressed

b. data (variable): the brush tip image data is a single
plane of grayscale data, stored in scanline order, with
no pad bytes.

If the compression code is 0, the data is just the raw image data.

If the compression code is 1, the data starts with the byte counts for all the
scan lines (equal to the number of rows, as described by the bounds), with
each count stored as a two–byte value. The RLE compressed data follows,
with each scan line compressed separately. The RLE compression is the same
compression algorithm used by the Macintosh ROM routine PackBits, and the
TIFF standard.

Load File Formats

Adobe Photoshop Software Development Kit

119

Color Table

Macintosh file type: '8BCT'
Windows file extension:.ACT

Color Table files are loaded and saved in Photoshop’s Color Table dialog
(used with Indexed Color images), and can be loaded into the Colors palette
as well.

There is no version number written in the file. The file is exactly 768 bytes
long.

This file contains 256 RGB colors, starting with the first color in the table
(index 0), with three bytes per color, in the order red, green, blue.

If loaded into the Colors palette, the colors will be installed in the color
swatch list as RGB colors.

Load File Formats

Adobe Photoshop Software Development Kit

120

Colors

Macintosh file type: '8BCO'
Windows file extension:.ACO

Colors files are loaded and saved in Photoshop’s Colors palette. These are
typically stored in the PALETTES sub–directory (Windows)

1. Version (2 bytes)

Equal to 1, written as a short integer.

2. Count (2 bytes)

A short integer indicating how many colors are in the remainder of the file.

3. Colors (Count * 10 bytes)

Each color is ten bytes in size, and is made up of the following subsections:

a. color space ID (2 bytes)

A short integer indicating the color space the color belongs to as shown in
table 1.

b. color data (8 bytes)

Four short integers (possibly unsigned) that are the actual color data. If the
color does not require four values to specify, the extra values are undefined
and should be written as zeroes. The most basic color spaces are outlined
below.

Photoshop allows the specification of custom colors, such as those colors that
are defined in a set of custom inks provided by a printing ink manufacturer.
These colors can be stored in the Colors palette and streamed to and from
load files. The details of a custom color’s color data fields are not public and
should be treated as a black box.

Table 11–1: Color data

Color ID Name Description

0 RGB The first three values in the color data are, respectively,
the color’s red, green, and blue components. They are full
unsigned 16–bit values as in Apple’s RGBColor data struc-
ture (e.g. pure red is defined as 65535, 0, 0).

1 HSB The first three values in the color data are, respectively,
the color’s hue, saturation, and brightness components.
They are full unsigned 16–bit values as in Apple’s HSV-
Color data structure (e.g. pure red is defined as 0, 65535,
65535).

2 CMYK The four values in the color data are, respectively, the
color’s cyan, magenta, yellow, and black components.
They are full unsigned 16–bit values, with 0 representing
100% ink (e.g. pure cyan is defined as 0, 65535, 65535,
65535).

7 Lab The first three values in the color data are, respectively,
the color’s lightness, a chrominance, and b chrominance
components. The lightness component is a 16–bit value
ranging from 0 to 10000. The chromanance components
are each 16–bit values ranging from –12800 to 12700.
Gray values are represented by chrominance components
of 0 (e.g. pure white is defined as 10000, 0, 0).

8 Grayscale The first value in the color data is the gray value; it
ranges from 0 to 10000.

Load File Formats

Adobe Photoshop Software Development Kit

121

Table 2 gives the color space IDs currently defined by Photoshop for some
custom color spaces:.

Table 11–2: Custom color spaces

Color ID Name

4 FOCOLTONE COLOUR SYSTEM

10 HKS colors (European Photoshop only)

3 PANTONE MATCHING SYSTEM

6 TOYO 88 COLORFINDER 1050

5 TRUMATCH color

Load File Formats

Adobe Photoshop Software Development Kit

122

Command Settings File

Macintosh file type: '8BFK'
Windows file extension:.ACM

Commands settings files are loaded and saved in Photoshop 3.0’s Commands
palette. This feature supplants the Function Key feature of Photoshop 2.5.
The Commands palette buttons are simple mappings to Photoshop menu
items, with optional function key shortcut and colorization.

1. Version (2 bytes)

Equal to 2, written as a short integer.

2. Count (2 bytes)

The number of command records that follow. There are no pad bytes
between records.

3. Command Records (variable)

The remainder of the file contains the Command records, one after the
other. Each one is composed of the following:

a. Command ID (4 bytes)

This field is obsolete and must be set to zero.

b. Function Key ID (2 bytes)

This is an integer ranging from –15 to 15. Positive numbers map directly onto
the numbered function keys (F1, F2, etc.) that are present on many personal
computer keyboards. Negative numbers indicate that the shift key must be
used as well for the keyboard shortcut (Shift–F1, Shift–F2, etc.). Zero means
the button has no keyboard shortcut. On Windows systems, values outside of
–12 to 12 will be ignored as standard Windows systems have 12 function keys
on the keyboard. Windows systems will also map 1 to 0, as the F1 key is
reserved for calling up Help. These numbers should be unique across all
entries in a Commands file, however Photoshop will ignore duplicates.

c. Color Index (2 bytes)

Each command button can be assigned a color with which its background
will be tinted when drawn. There are eight predefined colors, with matching
values as follows: 0 = None (button drawn in black and white), 1 = Red, 2 =
Orange, 3 = Yellow, 4 = Green, 5 = Blue, 6 = Purple, 7 = Gray.

d. Title Matching Flag (1 byte)

If set to 1, this boolean flag indicates that the button title should automati-
cally be updated to match the command’s current menu item text. For
example, a button assigned to the Layers palette would change text from
“Show Layers” to “Hide Layers” automatically as the state of the palette and
the actual menu item changes. If set to 0, the button title has been changed
from the menu item text by the user and shouldn’t change unless changed
by the user again.

e. Button Title (variable)

This is the title of the button that will be drawn on the Command palette. It
usually matches the corresponding menu item text. It is stored as a Pascal–
style string, with no pad bytes.

f. Command Key (variable)

This is the key for finding the menu item in Photoshop’s menus. To distin-
guish menu items from each other, which could be duplicated on different
menus, a key may include the title of the menu itself followed by a colon
(e.g. “Mode:RGB Color”). This text is displayed in the options dialog for the
button, but not on the Commands palette itself. (Note that even if the Title

Load File Formats

Adobe Photoshop Software Development Kit

123

Matching flag is turned on, the title of the button text on the screen never
contains the menu title qualifier.) It is stored as a Pascal–style string, with no
pad bytes.

Load File Formats

Adobe Photoshop Software Development Kit

124

Curves

Macintosh file type: '8BSC'
Windows file extension:.CRV

Curves settings files are loaded and saved in Photoshop’s Curves dialog and
Black Generation curve dialog (from within Separation Setup Preferences).
Curves files can also be loaded into any of Photoshop’s transfer function
dialogs, such as the Duotone Curve dialog from within Duotone Options.
(When loaded into a transfer function dialog, only the first curve in a Curves
file is used.)

1. Version (2 bytes)

Equal to 1, written as a short integer.

2. Count (2 bytes)

A short integer indicating how many curves are in the file. Must be in the
range 1 to 27.

3. Curves (variable)

The remainder of the file contains the curves, one after the other.

Each curve is written as follows (i.e. each curve is made up of the following
subsections):

a. point count (2 bytes)

A short integer in the range 2 to 19 indicates how many points are in the
curve.

b. curve points (point count * 2 bytes)

Each curve point is a pair of short integers where the first number is the
output value (vertical coordinate on the Curves dialog graph) and the second
is the input value. All coordinates have range 0 to 255.
Hence a null curve (no change to image data) is represented by the
following five–number, ten–byte sequence in a file: 2 0 0 255 255 . (Note
that Photoshop allows the option of displaying ink percentages instead of
pixel values; this is a display option only and the internal data is unchanged,
with 100% ink equal to image data of 0 and 0% ink equal to image data of
255.)

Generally, the first of the curves is a master curve that applies to all of the
composite channels in a composite image mode (e.g. the Red, Green, and
Blue channels are all modified by the master curve for an RGB document).
The remaining curves apply to the active channels individually; the second
curve applies to channel one (if it is an active channel), the third curve to
channel two, etc., up until the seventeenth curve, which applies to channel
sixteen. The exception to this, and the reason there are up to nineteen
curves, is when the original image is indexed color. In this case three curves
are created for the red, green, and blue portions of the image’s color table,
and they replace the curve that represents the first channel of the image.
This adds two curves for indexed images, and so for indexed color images
any alpha channel that is active corresponds to its channel number plus
three (e.g. if channel two is active it corresponds to curve number 5).

Photoshop handles single active channels in a special fashion. When saving
the curves applied to a single channel, the settings are stored into the
master slot, at the beginning of the file. Similarly, when reading a curves file
for application to a single active channel, the master curve is the one that
will be used on that channel. This allows easy application of a single file to
both RGB and Grayscale images.

Load File Formats

Adobe Photoshop Software Development Kit

125

Note that Photoshop 3.0 can write Curves files that Photoshop 2 will not be
able to read, because Photoshop 3.0’s active channel support is different
from Photoshop 2.0’s, and there could be more active channels in a Curves
dialog than 2.0 supported. Photoshop 3.0 will always write at least five
curves to a curves file, for maximum compatability with version 2.0.
However, beyond the curve for the fourth channel, it does not write null
curves past the last non–null curve that has been specified in the dialog. The
presence of extraneous null curves will not affect a load operation.

Also note that it is possible to create a Curves load file with Photoshop 3.0
that cannot be read by Photoshop 2.5; Photoshop 3.0 allows a maximum of
24 channels per document, Photoshop 2.5 allows 16. Such use of the Curves
function is rare, however.

Load File Formats

Adobe Photoshop Software Development Kit

126

Duotone options

Macintosh file type: '8BDT'
Windows file extension:.ADO

Duotone settings files are loaded and saved in Photoshop’s Duotone Options
dialog.

1. Version (2 bytes)

Equal to 1, written as a short integer.

2. Count (2 bytes)

A short integer indicating how many plates are in the duotone spec: 1 for
monotones, 2 for duotones, 3 for tritones, 4 for quadtones. Must be in the
range 1 to 4.

3. Ink Colors (4 * 10 bytes)

Four ink colors, regardless of the number of plates. The contents of the
colors beyond the last plate specified by Count are undefined. Each color is
streamed in the same fashion as in the Colors load file, and consists of the
following subsections:

a. color space (2 bytes)

A short integer indicating the color space the color is in.

b. color data (8 bytes)

Four short integers (possibly unsigned) that are the actual color data.

Please refer to the Colors file format for details on the contents of the color
records.

4. Ink Names (4 * 64 bytes)

Four ink names, regardless of the number of plates. Each name is streamed
as a Pascal–style string with a length byte followed by the characters in the
string. Names may not be more than 63 characters in length. Each name is
padded to occupy 64 bytes including the initial length byte. Any names
beyond the last plate specified by Count should be the empty string (size =
0).

5. Ink Curves (4 * 28 bytes)

Four ink curves, regardless of the number of plates. Each curve has the
following subsections:

a. transfer curve (26 bytes)

An array of 13 short integers, each ranging from 0 to 1000 (representing 0.0
to 100.0). In addition, all but the first and last value may be –1 (representing
no point on the curve). Hence a null transfer curve looks like this: 0, –1, –1, –
1, –1, –1, –1, –1, –1, –1, –1, –1, 1000.

b. override (2 bytes)

For compatability with Photoshop 2.0, this short integer should be 0. It is
ignored by Photoshop 3.0.

Any curves beyond the last plate specified by Count should be equal to the
null curve.

6. Dot Gain (2 bytes)

For compatability with Photoshop 2.0, this short integer should be 20. It is
ignored by Photoshop 3.0.

Load File Formats

Adobe Photoshop Software Development Kit

127

7. Overprint Colors (11 * 10 bytes)

Eleven ink colors, regardless of the number of plates. The number of defined
overprints depends on the number of plates, Count. For monotones, there
are no overprint colors. For duotones, there is one overprint color. For
tritones, there are four overprint colors. For quadtones, there are 11 over-
print colors. The contents of the colors beyond the last defined overprint are
undefined. Each color is streamed in the same fashion as in the Colors load
file, and consists of the following subsections:

a. color space (2 bytes)

A short integer indicating the color space the color is in.

b. color data (8 bytes)

Four short integers (possibly unsigned) that are the actual color data.

Load File Formats

Adobe Photoshop Software Development Kit 128

Halftone screens

Macintosh file type: '8BHS'
Windows file extension:.AHS

Halftone Screens settings files are loaded and saved in Photoshop’s Halftone
Screens dialog (from within Page Setup).

1. Version (2 bytes)
Equal to 5, written as a short integer.

2. Screens (4 * 18 bytes)
Four screen descriptions, each of which has the following subsections:

a. frequency value (4 bytes)
This ink’s screen frequency, in lines per inch. This is a binary fixed point
value with sixteen bits representing each of the integer and fractional parts
of the number. Values range from 1.0 to 999.999, with units in lpi (lines per
inch).

b. frequency scale (2 bytes)
The units for the screen frequency. Line per inch = 1, lines per centimeter =
2. Does not affect the frequency value itself, merely the way the value will
be displayed on the screen.

c. angle (4 bytes)
Angle for this screen, a binary fixed point value with sixteen bits repre-
senting each of the integer and fractional parts of the number. Values range
from –180.0000 to 180.0000, measured in degrees.

d. shape code (2 bytes)
A code representing the shape of the halftone dots in this screen. Round = 0,
Ellipse = 1, Line = 2, Square = 3, Cross = 4, Diamond = 6. Custom shapes are
represented by a negative number. The absolute value of this number is the
size in bytes of the custom Spot Function, which is outlined below.

e. miscellaneous (4 bytes)
For compatability, this should be set to 0. It is not currently used by Photo-
shop.

f. accurate screens (1 byte)
Boolean flag which is true (1) if accurate screens should be used, false (0)
otherwise.

g. default screens (1 byte)
Boolean flag which is true (1) if printer’s default screens should be used,
false (0) otherwise.

3. Spot Functions (size is the sum of the absolute values of all negative shape codes)
For every screen which has a custom spot function, the text of the PostScript
function is written here. The functions are written one after the other with
no header information, in the same order as the screen settings (screen
description 1’s spot function, if it has one, followed by number 2’s, etc.). The
shape code for those screens that have custom functions provides enough
information to separate the various functions and assign them.

Load File Formats

Adobe Photoshop Software Development Kit 129

Hue/Saturation

Macintosh file type: '8BHA'
Windows file extension:.HSS

Hue/Saturation settings files are loaded and saved in Photoshop’s Hue/Satu-
ration dialog.

1. Version (2 bytes)
Equal to 1, written as a short integer.

2. Mode (1 byte)
Photoshop’s Hue/Saturation dialog has two overall modes: in one, the
settings represent shifts in the image data’s hue and saturation, in the other
the entire image is colorized to a single hue. This byte is a boolean flag indi-
cating whether the colorization data or the hue–adjustment data in the file
should be used. If the byte is zero, the hue–adjustment data will be used. If
the byte is non–zero (Photoshop writes it as a 1) the colorization data will be
used. (Both sets of data are present, but only one is used depending on the
value of this byte.)

3. Padding (1 byte)
This pad byte must be present but is ignored by Photoshop.

4. Colorization (6 bytes)
Three short integers representing colorization settings. All values are in the
range –100 to 100. The first number is the hue in which the image data will
be colorized; the user interface represents the range of values as –180 to
180, where the number represents the hue in the traditional HSB color
wheel, with zero equal to red. The next number is the saturation, the third
number is the lightness adjustment.

5. Hue–Saturation Settings (42 bytes)
This data consists of three sets of seven short integers; all values range from
–100 to 100:

a. hue settings (14 bytes)
One master value and six other values. The first value is the master hue
change. For RGB and CMYK images, the other six values apply to each of the
six hextants in the HSB color wheel: those image pixels nearest to red,
yellow, green, cyan, blue, or magenta. (These numbers appear in the user
interface as being in the range –60 to 60; the values are nevertheless stored
as –100 to 100 and the slider will reflect each of the possible 201 values.) For
Lab images, the first four of these values are applied to image pixels in the
four Lab color quadrants (yellow, green, blue, magenta), and the other two
values are ignored (Photoshop sets them to zero). (The values that are used
range from –90 to 90 in the user interface.)

b. saturation settings (14 bytes)
Seven short integers representing the saturation adjustments. The first is a
master value. The other six are applied to pixels using the same hue sextant
or quadrant breakdown as for the hue adjusments; as before the last two are
ignored for Lab documents.

c. lightness settings (14 bytes)
The last seven short integers are the lightness adjustments. The first is a
master value. The other six are applied to pixels using the same hue sextant
or quadrant breakdown as for the hue and saturation adjusments; as before
the last two are ignored for Lab documents.

Load File Formats

Adobe Photoshop Software Development Kit 130

Ink colors setup

Macintosh file type: '8BIC'
Windows file extension:.API

Ink Colors settings files are loaded and saved in Photoshop’s Ink Colors Setup
dialog, via the Preferences submenu.

1. Version (2 bytes)
Equal to 4, written as a short integer.

2. Ink Colors (27 * 2 bytes)
Nine short integer triples specifying the xyY (CIE) values for the inks and
their combinations. The inks are specified in the order Cyan, Magenta,
Yellow, Magenta–Yellow (Red), Cyan–Yellow (Green), Cyan–Magenta (Blue),
Cyan–Magenta–Yellow, followed by the White and Black points. Each triple
is written in the order x (range: 0 to 10000, representing 0.0 to 1.0000), y
(range: 1 to 10000, representing 0.0001 to 1.0000), Y (range: o to 20000,
representing 0.00 to 200.00).

3. Gray Balance (4 * 2 bytes)
Four short integers specifying the gray color balance for Cyan, Magenta,
Yellow, and Black. Each ranges from 50 to 200 (representing 0.5 to 2.00).

4. Dot Gain (2 bytes)
A short integers specifying the dot gain. Ranges from –10 to 40 (–10% to
40%).

Load File Formats

Adobe Photoshop Software Development Kit 131

Custom kernel

Macintosh file type: '8BCK'
Windows file extension:.ACF

Kernel settings files are loaded and saved in Photoshop’s Custom filter
dialog.

There is no version number written in the file. The file is expected to be
exactly 54 bytes long, representing 27 short integers.

1. Weights (50 bytes)
The first 25 values are the custom weights, applied to pixels offset from (–2,
–2) to (2, 2) off of each image pixel. The values progress through horizontal
offsets first, e.g. the first five values all represent a vertical offset of –2. Each
value can range from –999 to 999.

2. Scale (2 bytes)
This value can range from 1 to 9999.

3. Offset (2 bytes)
This value can range from –9999 to 9999.

Load File Formats

Adobe Photoshop Software Development Kit 132

Levels

Macintosh file type: '8BLS'
Windows file extension:.ALV

Levels settings files are loaded and saved in Photoshop’s Levels dialog.
There are two versions of this file format. Photoshop 3.0 reads both but only
writes version 2. Note that because the maximum number of channels that a
document can contain was increased in Photoshop 3.0 (from 16 to 24),
Photoshop 3.0 actually writes a longer Levels file than Photoshop 2.5. Photo-
shop 2.5 is still capable of reading these files, however, and will simply
ignore the extra data.

1. Version (2 bytes)
Equal to 2, written as a short integer.

2. Levels Records (290 bytes)
This consists of 29 sets of levels. Each set of levels contains five short inte-
gers, in ten bytes.

The first number in a set is the input floor setting, and must range from 0 to
253. The second number is the input ceiling, and must range from 2 to 255.
Third is the output value to which the input floor willbe matched. It can
range from 0 to 255. Fourth is the ceiling output, also ranging from 0 to 255.
The fifth value is the gamma to be applied to the image data. It ranges from
10 to 999 (representing the values 0.1 to 9.99).

The first set of levels are the master levels that apply to all of the composite
channels in a composite image mode (e.g. the Red, Green, and Blue channels
are all modified by the master levels settings for an RGB document).

The remaining sets apply to the active channels individually; the second set
applies to channel one (if it is an active channel), the third set to channel
two, etc., up until the 25th set, which applies to channel 24.

The exception to this is when the original image is indexed color. In this case
three sets of levels are created for the red, green, and blue portions of the
image’s color table, and they replace the levels that represent the first
channel of the image. This adds two sets of levels for indexed images, and so
for indexed color images any alpha channel that is active corresponds to its
channel number plus three (e.g. if channel two is active it corresponds to set
number 5). The 28th and 29th sets are reserved for future use and should be
set to zeroes.

Photoshop handles single active channels in a special fashion. When saving
the levels applied to a single channel, the settings are stored into the master
slot, at the beginning of the file. Similarly, when reading a levels file for
application to a single active channel, the master levels are the ones that
will be used on that channel. This allows easy application of a single file to
both RGB and Grayscale images.

Load File Formats

Adobe Photoshop Software Development Kit 133

Monitor setup

Macintosh file type: '8BMS'
Windows file extension:.AMS

Monitor settings files are loaded and saved in Photoshop’s Monitor Setup
dialog, via the Preferences submenu.

1. Version (2 bytes)
Equal to 2, written as a short integer.

2. Gamma (2 bytes)
A short integer indicating the monitor’s gamma. Must be in the range 75 to
300 (representing 0.75 to 3.00).

3. White Point (2 * 2 bytes)
Two short integers giving the monitor’s white point: the first is the x value,
ranging from 0 to 10000 (representing 0.0 to 1.0000), the second is the y
value, ranging from 1 to 10000 (representing 0.0001 to 1.0000).

4. Phosphors (6 * 2 bytes)
Three sets of two integers giving the x–y coordinates of the red, green, and
blue phosphors. First comes red x, then red y; then green x, etc. The x values
range from 0 to 10000 (representing 0.0 to 1.0000); the y values range from
1 to 10000 (representing 0.0001 to 1.0000).

Load File Formats

Adobe Photoshop Software Development Kit 134

Replace color/Color range

Macintosh file type: '8BXT'
Windows file extension:.AXT

Replace Color settings files are loaded and saved in Photoshop’s Replace
Color dialog. They are also used to load and save settings from the Color
Range dialog

1. Version (2 bytes)
Equal to 1, written as a short integer.

2. Color Space (2 bytes)
A short integer indicating what space the color components are in. 7 indi-
cates Lab color, 8 indicates Grayscale. No other values are supported.

3. Component Ranges (6 bytes)
These six unsigned byte values represent the range of colors within which a
pixel’s color must fall to be considered selected for color replacement, or
color range selecting. If the Color Space is grayscale, the first two bytes are
the low and high endpoints of the range of gray values that are to be
selected. The other four bytes should be zeroed. If the Color Space is Lab,
then the first two bytes are the low and high endpoints of a range of ‘L’
values, the second two bytes are the low and high endpoints of a range of
‘a’ chromanance values, and the third pair bytes are the low and high
endpoints of a range of ‘b’ chromanance values.

4. Fuzziness (2 bytes)
This short integer records the fuzziness setting, which controls how colors
close to the selected colors are to be affected. It ranges from 0 to 200.

5. Transform Settings (6 bytes)
For files loaded into the Color Range dialog, these values are ignored. The
Color Range dialog will write zeroes here. For Replace Color, this consists of
three short integers; all values range from –100 to 100:

a. hue transform (2 bytes)
The hue change to be applied to the selected colors.

b. saturation transform (2 bytes)
The saturation change to be applied to the selected colors.

c. lightness transform (2 bytes)
The lightness change to be applied to the selected colors.

Load File Formats

Adobe Photoshop Software Development Kit 135

Scratch Area

Macintosh file type: '8BSR'
Windows file extension:.ASR

Scratch Area settings files are loaded and saved in Photoshop’s Scratch
palette.

1. Version (2 bytes)
Equal to 1, written as a short integer.

2. Scratch Area data (variable)
The Photoshop scratch area consists of RGB image data. The three planes of
data are written one after the other, in the order Red, Green, Blue; each
consists of the following:

a. bounds (16 bytes)
A rectangle, four long integers giving the bounds of the scratch data (in the
order top, left, bottom, right); for Photoshop 3.0, this must always corre-
spond to [0, 0, 89, 200] as the Scratch palette has a fixed size.

b. depth (2 bytes)
depth of the current plane of data, which is always 8.

c. image data (variable):

i. compression (2 bytes)
Two values are currently defined: 0 = Raw Data, 1 = RLE compressed

ii. data (variable)
Each plane of the scratch image data is stored in scanline order, with no pad
bytes.

If the compression code is 0, the data is just the raw image data.

If the compression code is 1, the data starts with the byte counts for all the
scan lines (equal to the number of rows, as described by the bounds), with
each count stored as a two–byte value. The RLE compressed data follows,
with each scan line compressed separately. The RLE compression is the same
compression algorithm used by the Macintosh ROM routine PackBits, and the
TIFF standard.

Load File Formats

Adobe Photoshop Software Development Kit 136

Selective color

Macintosh file type: '8BSV'
Windows file extension:.ASV

Selective Color settings files are loaded and saved in Photoshop’s Selective
Color dialog.

1. Version (2 bytes)
Equal to 1, written as a short integer.

2. Correction Method (2 bytes)
A short integer indicating how the color correction is to be applied: in Rela-
tive (0) or Absolute (1) mode.

3. Plate Corrections (80 bytes)
The remainder of the file contains 10 correction records, one after the other.

Each record is written as follows:

a. cyan correction (2 bytes)
A short integer in the range –100 to 100 indicating the amount of correction
for the cyan component.

b. magenta correction (2 bytes)
A short integer in the range –100 to 100 indicating the amount of correction
for the magenta component.

c. yellow correction (2 bytes)
A short integer in the range –100 to 100 indicating the amount of correction
for the yellow component.

d. black correction (2 bytes)
A short integer in the range –100 to 100 indicating the amount of correction
for the black component.

The first record is ignored by Photoshop 3.0 and is reserved for future use. It
should be set to all zeroes. The rest of the records apply to specific areas of
colors or lightness values in the image, in the following order: Reds, Yellows,
Greens, Cyans, Blues, Magentas, Whites, Neutrals, Blacks.

Load File Formats

Adobe Photoshop Software Development Kit 137

Separation setup

Macintosh file type: '8BSS'
Windows file extension:.ASP

Separation settings files are loaded and saved in Photoshop’s Separation
Setup dialog, via the Preferences submenu.

1. Version (2 bytes)
Equal to 300, written as a short integer.

2. Separation Type (1 byte)
A boolean flag indicating UCR (value = 0) or GCR (value = 1) separations.

3. Black Limit (2 bytes)
A short integer giving the black ink limit, ranging from 0 to 100.

4. Total Limit (2 bytes)
A short integer giving the total ink limit, ranging from 200 to 400.

5. UCA Amount (2 bytes)
A short integer giving the undercolor addition for GCR separations, ranging
from 0 to 100.

6. Black Generation Curve (variable)
This is a spline curve. The format is identical to a single curve instance from
the Curves file format. It is composed of two parts:

a. point count (2 bytes)
A short integer in the range 2 to 19 indicates how many points are in the
curve.

b. curve points (point count * 2 bytes)
Each curve point is a pair of short integers where the first number is the
output value (vertical coordinate on the Black Generation dialog graph) and
the second is the input value. All coordinates have range 0 to 255.

Hence a null curve (no change to input values) is represented by the
following five–number, ten–byte sequence in a file: 2 0 0 255 255 .

Note that the black generation curve and the UCA limit must both be
present even if the Separation Type is set to UCR.

Load File Formats

Adobe Photoshop Software Development Kit 138

Separation tables

Macintosh file type: '8BST'
Windows file extension:.AST

Separation Table files are loaded and saved in Photoshop’s Separation Tables
dialog.

If the size of the file is 33 * 33 * 33 * 4, then the file consists only of an Lab–
>CMYK table as currently documented.

If the size of the file is 33 * 33 * 33 + 256 * 3, then the file consists only of a
CMYK–>Lab table as currently documented.

Otherwise, the file has the following format:

1. Version (2 bytes)
Equal to 300, written as a short integer.

2. Has Lab to CMYK (1 byte)
Boolean indicating whether the file contains an Lab to CMYK table.

3. Has CMYK to Lab (1 byte)
Boolean indicating whether the file contains an CMYK to Lab table.

4. Lab to CMYK Table (33 * 33 * 33 * 4 bytes, optional)
If field 2 is equal to 1 (true), this section contains the CMYK colors for 33 *
33 *33 Lab colors. The Lab colors that are the source colors for this can be
generated:

for (i = 0; i< 33; i++)
for (j = 0; j < 33; j++)

for (n = 0; n < 33; n++)

{

L = Min (i * 8, 255);

a = Min (j * 8, 255);

b = Min (n* 8, 255);

}

The CMYK colors are written in interleaved order, one byte each ink, 0 =
100%, 255 = 0%.

5. CMYK to Lab Table ((33 * 33 * 33 + 256) * 3 bytes, optional)
If field 3 is equal to 1 (true), this section contains the Lab colors for 33 * 33
*33 + 256 CMYK colors. The CMYK colors that are the source colors for this
can be generated:

for (i = 0; i< 33; i++)
for (j = 0; j < 33; j++)

for (n = 0; n < 33; n++)

{

c = Min (i * 8, 255);

m = Min (j * 8, 255);

y = Min (n* 8, 255);

k = 255;

}

for (i = 0; i < 256; i++)

{

c = 255;

m = 255;

y = 255;

Load File Formats

Adobe Photoshop Software Development Kit 139

k = i;

}

The Lab colors are written in interleaved order, one byte per component.

If after reading the above data, the file is not yet empty, then the file
contains the following data.

6. Has Gamut Table (1 byte, 1 = have table, 0 = don’t have table)
Flag to indicate whether a gamut table follows. If zero, then this flag is the
last byte of the file; the filler byte and gamut table (described below) will
not be present.

7. Filler (1 byte, optional)
If Has Gamut Table == 1, then this filler byte should also be set to 1 for
compatibility reasons.

8. Gamut Table ((((33 * 33 * 33L) + 7) >> 3) bytes, optional)
If Has Gamut Table == 1, then the gamut table data consists of (((33 * 33 *
33L) + 7) >> 3) bytes of data. This is a bit table indexed in the same way as
the Lab–>CMYK table with the provision that the high bit of the first byte is
at index 0, etc.

To test the bit at bitIndex, use table [bitIndex >> 3] & (0x0080 >> (bitIndex &
0x07))) != 0. bitIndex itself is calculated in the same way you would calculate
an index into the Lab–>CMYK table.

A 1 indicates that the color is in gamut and a 0 indicates that it is out of
gamut.

Load File Formats

Adobe Photoshop Software Development Kit 140

Transfer function

Macintosh file type: '8BTF'
Windows file extension:.ATF

Transfer Function settings files are loaded and saved in Photoshop’s Duotone
Curve dialog (from within Duotone Options) and Transfer Function dialogs
(from within Page Setup). Transfer Function files can also be loaded into any
of Photoshop’s curves dialogs, such as the Curves color adjustment dialog.

1. Version (2 bytes)
Equal to 4, written as a short integer.

2. Functions (112 bytes)
There are four transfer functions in the file. Each function is made up of the
following subsections:

a. curve (26 bytes)
A transfer curve consists of 13 short integers, each ranging from 0 to 1000
(1000 represents the value 100.0). In addition, all but the first and last value
may be –1 (representing no point on the curve). Hence a null transfer curve
looks like this: 0, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, 1000.

b. override (2 bytes)
This is a boolean flag indicating whether the curve should override the
printer’s default transfer curve. If it is zero, the printer’s curve will not be
overridden.

Note again that the file always contains four functions. For example, when
writing the printer transfer functions for Grayscale images Photoshop writes
four copies of the single transfer function specified in the user interface.

A

Data Structures

Adobe Photoshop Software Development Kit

141

This appendix provides information about various data structures used by
plug–in modules.

Information about the PiPL data structures in contained in chapter 4. PiMI
data structures are described in chapter 5. The different plug–in parameter
blocks are described in their respective chapters (6–9).

Data Structures

Adobe Photoshop Software Development Kit

142

PSPixelMap

typedef struct PSPixelMap
{

int32 version;

VRect bounds;

int32 imageMode;

int32 rowBytes;

int32 colBytes;

int32 planeBytes;

void *baseAddr;

/* Fields new in version 1. */

PSPixelMask *mat;

PSPixelMask *masks;

int32 maskPhaseRow;

int32 maskPhaseCol;

} PSPixelMap;

Table A–1: PSPixelMap structure

Type Field Description

int32 version The version number for this structure. The current
version number is version 1. Future versions of Pho-
toshop may support additional parameters and will
support higher version numbers for PSPixelMap’s.

VRect bounds The bounds for the pixel map.

int32 imageMode The mode for the image data. The supported
modes are grayscale, RGB, CMYK, and Lab. Addi-
tionally, if the mode of the document being pro-
cessed is DuotoneMode or IndexedColorMode, you
can pass plugInModeDuotone or plugInModeIn-
dexedColor.

int32 rowBytes The offset from one row to the next of pixels.

int32 colBytes The offset from one column to the next of pixels.

int32 planeBytes The offset from one plane of pixels to the next. In
RGB, the planes are ordered red, green, blue; in
CMYK, the planes are ordered cyan, magenta, yel-
low, black; in Lab, the planes are ordered L, a, b.

void * baseAddr The address of the byte value for the first plane of
the top left pixel.

PSPixelMask * mat For all modes except indexed color, you can specify
a mask to be used for matting correction. For
example, if you have white matted data to display,
you can specify a mask in this field which will be
used to remove the white fringe. This field points
to a PSPixelMask structure (see below) with a mask-
Description indicating what type of matting needs
to be compensated for. If this field is NULL, Photo-
shop performs no matting compensation. If the
masks are chained, only the first mask in the chain
is used.

Data Structures

Adobe Photoshop Software Development Kit

143

PSPixelMask * masks This points to a chain of PSPixelMasks which are
multiplied together (with the possibility of inver-
sion) to establish which areas of the image are
transparent and should have the checkerboard dis-
played. kSimplePSMask, kBlackMatPSMask,
kWhiteMatPSMask, and kGrayMatPSMask all oper-
ate such that 255 = opaque and 0 = transparent.
kInvertPSMask has 255 = transparent and 0 =
opaque.

int32 maskPhaseRow Tthe phase of the checkerboard with respect to the
top left corner of the PSPixelMap.

int32 maskPhaseCol The phase of the checkerboard with respect to the
top left corner of the PSPixelMap.

Table A–1: PSPixelMap structure (Continued)

Type Field Description

Data Structures

Adobe Photoshop Software Development Kit

144

PSPixelMask

The PSPixelMask structure is defined as follows:

typedef struct PSPixelMask
{

struct PSPixelMask * next

void * maskData;

int32 rowBytes;

int32 colBytes;

int32 maskDescription;

} PSPixelMask;

Table A–2: PSPixelMask structure

Type Field Description

PSPixelMask *

next A pointer to the next mask in the chain

void * maskData A pointer to the mask data.

int32 rowBytes The row step for the mask.

int32 colBytes The column step for the mask.

int32 maskDescription The mask description value, which is one of the
following:

#define kSimplePSMask 0
#define kBlackMatPSMask 1

#define kGrayMatPSMask 2

#define kWhiteMatPSMask 3

#define kInvertPSMask 4

Data Structures

Adobe Photoshop Software Development Kit

145

ColorServicesInfo

This data structure is used in the ColorServices callback function. See chapter
3 and the notes following table A–3 for more details.

typedef struct ColorServicesInfo
{

int32 infoSize;

int16 selector;

int16 sourceSpace;

int16 resultSpace;

Boolean resultGamutInfoValid;

Boolean resultInGamut;

void *reservedSourceSpaceInfo;

void *reservedResultSpaceInfo;

int16 colorComponents[4];

void *reserved;

union

{

Str255 *pickerPrompt;

Point *globalSamplePoint;

int32 specialColorID;

} selectorParameter;

}

ColorServicesInfo;

Table A–3: ColorServicesInfo structure

Type Field Description

int32 infoSize This field must be filled in with the size of
the ColorServicesInfo record in bytes. The
value is used as a version identifier in case
this record is expanded in the future. It can
be filled in like so:

ColorServicesInfo requestInfo;

requestInfo.infoSize = sizeof(requestInfo);

int16 selector This field selects the operation performed by
the ColorServices callback.

#define plugIncolorServicesChooseColor 0
#define plugIncolorServicesConvertColor 1
#define plugIncolorServicesSamplePoint 2
#define plugIncolorServicesGetSpecialColor 3

int16 sourceSpace This field is used for to indicate the color
space of the input color contained in color-
Components. For plugIncolorServicesChoose-
Color the input color is used as an initial
value for the picker. For plugIncolorService-
sConvertColor the input color will be con-
verted from the color space indicated by
sourceSpace to the one indicated by
resultSpace.

Available color spaces:

#define plugIncolorServicesRGBSpace 0
#define plugIncolorServicesHSBSpace 1
#define plugIncolorServicesCMYKSpace 2
#define plugIncolorServicesLabSpace 3
#define plugIncolorServicesGraySpace 4
#define plugIncolorServicesHSLSpace 5
#define plugIncolorServicesXYZSpace 6

Data Structures

Adobe Photoshop Software Development Kit

146

Notes:

The colorComponents array contains color values as listed in the color space
name. Components not used in the input color space need not be filled in
and components not used in the result color space are undefined.

For

RGB colors

, the colorComponents values are:

colorComponent[0] = Red value
colorComponent[1] = Green value
colorComponent[2] = Blue value
colorComponent[3] = (undefined)

int16 resultSpace This field holds the desired color space of the
result color from the ColorServices call. The
result will be contained in the colorCompo-
nents field when ColorServices returns. For
the plugIncolorServicesChooseColor selector,
resultSpace can be set to plugIncolorService-
sChosenSpace to return the color in which-
ever color space the user chose the color. In
that case, resultSpace will contain the chosen
color space on output.

Boolean resultGamutInfoValid This output only field indicates whether the
resultInGamut field has been set. In Photo-
shop 3.0, this will only be true for colors
returned in the plugIncolorServicesCMYK-
Space color space.

Boolean resultInGamut This output only field is a boolean value that
indicates whether the returned color is in
gamut for the currently selected printing
setup. It is only meaningful if the resultGa-
mutInfoValid field is true.

void * reservedSourceSpaceInfo Must be NULL. A parameter error will be
returned if they are not.

void * reservedResultSpaceInfo Must be NULL. A parameter error will be
returned if they are not.

int16 colorComponents[4] This array contains the actual color compo-
nents of the input or output color.

Refer to the notes following this table for
more information about the color values that
are represented in this array.

void * reserved Must be NULL. A parameter error will be
returned if they are not.

union selectorParameter This union is used for providing different
information based on the selector field.

The pickerPrompt variant contains a pointer
to a Pascal string which will be used as a
prompt in the Photoshop color picker for the
plugIncolorServicesChooseColor call. NULL
can be passed to indicate no prompt should
be used.

The globalSamplePoint field points to a Point
record that indicates the current sample
point.

The specialColorID should be either:

plugIncolorServicesForegroundColor (0) or

plugIncolorServicesBackgroundColor (1).

Table A–3: ColorServicesInfo structure (Continued)

Type Field Description

Data Structures

Adobe Photoshop Software Development Kit

147

Each RGB value should be in the range 0 through 255.

For

HSB colors

, the colorComponents values are:

colorComponent[0] = Hue value
colorComponent[1] = Saturation value
colorComponent[2] = Brightness value
colorComponent[3] = (undefined)

The Hue value should be in the range 0 through 359 degrees. The Saturation
and Brightness values should be in the range 0 through 255 representing 0
through 100%.

For

L*a*b colors

, the colorComponents values are:

colorComponent[0] = L value
colorComponent[1] = a value
colorComponent[2] = b value
colorComponent[3] = (undefined)

L ranges from 0 to 255 representing the range 0...100.

a and b range from 0 to 255 representing the range -128 to 127. Note that
these are merely shifted by +128, it is not a two’s complement signed
number.

For

CMYK colors

, the colorComponents values are:

colorComponent[0] = Cyan value
colorComponent[1] = Magenta value
colorComponent[2] = Yellow value
colorComponent[3] = blacK value

Each component ranges from 0 to 255, representing ink values from 100%
down to 0%. This may be counterintuitive, since larger values represent
lighter colors. This does make it easier to use CMY and RGB interchangeably.

For

Grayscale colors

, the colorComponents values are:

colorComponent[0] = Gray value
colorComponent[1] = (undefined)
colorComponent[2] = (undefined)
colorComponent[3] = (undefined)

The gray value should be in the range 0 through 255.

Data Structures

Adobe Photoshop Software Development Kit

148

PlugInMonitor

A number of the plug–in module types get passed monitor descriptions via
the PlugInMonitor structure. These descriptions basically detail the informa-
tion recorded in Photoshop’s Monitor Setup dialog and are passed in a struc-
ture of the following type:

typedef struct PlugInMonitor
{

Fixed gamma;
Fixed redX;
Fixed redY;
Fixed greenX;
Fixed greenY;
Fixed blueX;
Fixed blueY;
Fixed whiteX;
Fixed whiteY;
Fixed ambient;

} PlugInMonitor;

The fields of this record are as follow:

Table A–4: PlugInMonitor structure

Type Field Description

Fixed gamma This field contains the monitor’s gamma value or zero if
the whole record is invalid.

Fixed redX These fields specify the chromaticity coordinates of the
monitor’s phosphors.

Fixed redY

Fixed greenX

Fixed greenY

Fixed blueX

Fixed blueY

Fixed whiteX These fields specify the chromaticity coordinates of the
monitor’s white point.

Fixed whiteY

Fixed ambient This field specifies the relative amount of ambient light in
the room. Zero means a relatively dark room, 0.5 means
an average room, and 1.0 means a bright room.

Data Structures

Adobe Photoshop Software Development Kit

149

ResolutionInfo

This structure contains information about the resolution of an image. It is
written as an image resource. See chapter 10 for more details.

struct ResolutionInfo
{

Fixed hRes;

int16 hResUnit;

int16 widthUnit;

Fixed vRes;

int16 vResUnit;

int16 heightUnit;

};

hRes

 and

vRes

 are always stored in units of pixels/inch.

hResUnit

 and

vResUnit

 are 1 if the resolution should be displayed in pixels/inch, or 2 if it
should be displayed in units of pixels/cm.

widthUnit

 and

heightUnit

 are 1 for inches, 2 for cm, 3 for points, 4 for picas,
or 5 for columns.

Data Structures

Adobe Photoshop Software Development Kit

150

DisplayInfo

This structure contains display information about each channel. It is written
as an image resource. See chapter 10 for more details.

struct DisplayInfo
{

int16 colorSpace;

int16 color[4];

int16 opacity; // 0..100

char kind; // selected = 0, protected = 1

char padding; // should be zero

};

See the table 11–1 for a list of colorSpace values.

B

PiPL Grammar

Adobe Photoshop Software Development Kit

151

This information is included as reference material. If you use the example
source code and the documentation earlier in the chapter, you probably
won’t need to worry about the specifics of the PiPL syntax.

Miscellaneous definitions

<OSType>

<int16>

<int32>

<epsilon> :=

Beginning of real grammar.

<PiPL spec> := <resource header> <resource body>

<resource header> :=

"resource" "'PiPL'" "("

 <resourceID> <optional resource name> <optional attribute list>

")"

<optional name> :=

<epsilon> |

"," <string>

<optional attribute list> :=

<epsilon> |

"," <attribute> <attribute list tail>

<attribute list tail> :=

<epsilon> |

 "|" <attribute> <attribute list tail>

<resource body> :=

"{" "{"

<property list>

"}" "}"

<property list tail> :=

<epsilon> |

"," <property> <property list tail>

<property list> :=

<epsilon>

| <property> <property list tail>

<property> :=

<kind property> |

<version property> |

<priority property> |

<required host property> |

<name property> |

PiPL Grammar

Adobe Photoshop Software Development Kit

152

<category property> |

<68k code descriptor property> |

<powerpc code descriptor property> |

<win32 x86 code property> |

<supported modes property> |

<filter case info property> |

<format file type property> |

<read types property> |

<write types property> |

<filtered types property> |

<read extensions property> |

<write extensions property> |

<filtered extensions property> |

<format flags property> |

<format maximum size property> |

<format maximum channels property> |

<parsable types property> |

<parsable extensions property> |

<filtered parsable types property> |

<filtered parsable extensions property> |

<parsable clipboard types property>

<kind property> := "Kind" "{" <kind ID> "}"

<kind ID> := <OSType> |

"Filter" |

"Parser" |

"ImageFormat" |

"Extension" |

"Acquire" |

"Export"

<version property> := "Version" "{" <version clause> "}"

<version clause> := <int32> |

"(" <wired version ID high> "<<" "16" ")" "|"

"(" <wired version ID low> ")" |

<wired version ID>

<wired version ID> := "FilterVersion" |

"ParserVersion" |

"ImageFormatVersion" |

"ExtensionVersion" |

"AcquireVersion" |

"ExportVersion"

<wired version ID high> := "latestFilterVersion" |

"latestParserVersion" |

"latestImageFormatVersion" |

"latestExtensionVersion" |

"latestAcquireVersion" |

"latestExportVersion"

<wired version ID high> := "latestFilterSubVersion" |

"latestParserSubVersion" |

"latestImageFormatSubVersion" |

"latestExtensionSubVersion" |

"latestAcquireSubVersion" |

"latestExportSubVersion"

<priority property> := "Priority" "{" <int16> "}"

<required host property> := "Host" "{" <OSType> "}"

PiPL Grammar

Adobe Photoshop Software Development Kit

153

<name property> := "Name" "{" <string> "}"

<category property> := "Category" "{" <string> "}"

<68k code descriptor property> := "Code68k" "{" <OSType>, <int16> "}"

<powerpc code descriptor property> := "CodePowerPC" "{"

<int32>, <int32> <optional name> "}"

<win32 x86 code property> := "CodeWin32X86" "{" <string> "}

<bitmap support> := "noBitmap" | "doesSupportBitmap"

<grayscale support> := "noGrayScale" | "doesSupportGrayScale"

<indexed support> := "noIndexedColor" | "doesSupportIndexedColor"

<RGB support> := "noRGBColor" | "doesSupportRGBColor"

<CMYK support> := "noCMYKColor" | "doesSupportCMYKColor"

<HSL support> := "noHSLColor" | "doesSupportHSLColor"

<HSB support> := "noHSBColor" | "doesSupportHSBColor"

<multichannel support> := "noMultichannel" | "doesSupportMultichannel"

<duotone support> := "noDuotone" | "doesSupportDuotone"

<LAB support> := "noLABColor" | "doesSupportLABColor"

<supported modes property> := "SupportedModes"

"{"

<bitmap support> ","

<grayscale support> ","

<indexed support> ","

<RGB support> ","

<CMYK support> ","

<HSL support> ","

<HSB support> ","

<multichannel support> ","

<duotone support> ","

<LAB support>

"}"

<filter case info property> := "FilterCaseInfo"

"{"

"{"

<filter info case> # filterCaseFlatImageNoSelection

<filter info case> # filterCaseFlatImageWithSelection

<filter info case> # filterCaseFloatingSelection

<filter info case> # filterCaseEditableTransparencyNoSelection

<filter info case> # filterCaseEditableTransparencyWithSelection

<filter info case> # filterCaseProtectedTransparencyNoSelection

<filter info case> # filterCaseProtectedTransparencyWithSelection

"}"

"}"

<filter info case> :=

<input matting> "," <output matting> ","

<layer mask flag> "," <blank data flag> "," <copy source flag>

<input matting> :=

"inCantFilter" |

"inStraightData" |

"inBlackMat" |

"inGrayMat" |

"inWhiteMat" |

"inDefringe" |

"inBlackZap" |

"inGrayZap" |

PiPL Grammar

Adobe Photoshop Software Development Kit

154

"inWhiteZap" |

"inBackgroundZap" |

"inForegroundZap"

<ouput matting> :=

"outCantFilter" |

"outStraightData" |

"outBlackMat" |

"outGrayMat" |

"outWhiteMat" |

"outFillMask"

<layer mask flag> := "doesNotFilterLayerMasks" | "filtersLayerMasks"

<blank data flag> := "doesNotWorkWithBlankData" | "worksWithBlankData"

<copy source flag> := "copySourceToDestination" |

"doNotCopySourceToDestination"

<type creator pair> :=

<OSType> "," <OSType>

<format file type property> :=

"{"

<type creator pair>

"}"

<type creator pair list tail> :=

<epsilon> |

"," "{" <type creator pair> "}" <type creator pair list tail>

<type creator pair list> :=

<epsilon> |

"{" <type creator pair> "}" <type creator pair list tail>

<read types property> :=

"{"

<type creator pair list>

"}"

<write types property> :=

"{"

<type creator pair list>

"}"

<filtered types property> :=

"{"

<type creator pair list>

"}"

<ostype list tail> :=

<epsilon> |

"," "{" <OSType> "}" <ostype list tail>

<ostype list> :=

<epsilon> |

"{" <OSType> "}" <ostype list tail>

<read extensions property> :=

"{"

<ostype list>

"}"

<write extensions property> :=

"{"

PiPL Grammar

Adobe Photoshop Software Development Kit

155

<ostype list>

"}"

<filtered extensions property> :=

"{"

<ostype list>

"}"

<saves image resources flag> :=

"fmtDoesNotSaveImageResources" | "fmtSavesImageResources"

<can read flag> :=

"fmtCannotRead" | "fmtCanRead"

<can write flag> :=

"fmtCannotWrite" | "fmtCanWrite"

<write if read flag> :=

"fmtWritesAll" | "fmtCanWriteIfRead"

<format flags property> :=

"{"

<saves image resources flag> ","

<can read flag> ","

<can write flag> ","

<write if read flag>

"}"

<format maximum size property> :=

"{"

<int16>, <int16>

"}"

<format maximum channels property> :=

<parsable types property> :=

"{"

<type creator pair list>

"}"

<parsable extensions property> :=

"{"

<ostype list>

"}"

<filtered parsable types property> :=

"{"

<type creator pair list>

"}"

<filtered parsable extensions property> :=

"{"

<ostype list>

"}"

<parsable clipboard types property> :=

"{"

<ostype list>

"}"

Index

Adobe Photoshop Software Development Kit

156

File Extensions and Types

.ABR

 117

.ACF

 131

.ACM

 122

.ACO

 120

.ACT

 119

.ADO

 126

.AHS

 128

.ALV

 132

.AMP

 116

.AMS

 133

.API

 130

.ASP

 137

.ASR

 135

.AST

 138

.ASV

 136

.ATF

 140

.AXT

 134

.CRV

 124

.HSS

 129

8BBR

 117

8BCK

 131

8BCO

 120

8BCT

 119

8BDT

 126

8BFK

 122

8BHA

 129

8BHS

 128

8BIC

 130

8BLS

 132

8BLT

 116

8BMS

 133

8BSC

 124

8BSR

 135

8BSS

 137

8BST

 138

8BSV

 136

8BTF

 140

8BXT

 134

A

A5 register (680x0)

 18

about boxes

 15

acquire modules

 55

AcquireRecord parameter block

 60

acquireSelectorContinue

 57

acquireSelectorFinalize

 58

acquireSelectorFinish

 57

acquireSelectorPrepare

 56

acquireSelectorStart

 57

AddPIResourceProc

 31

Adobe Premiere

 111

AdvanceStateProc

 26

AllocateBufferProc

 29

Apple MPW 3.3.1

 18

B

BNDL resource

 17

Boolean

 13

Borland C++

 21

Index

Adobe Photoshop Software Development Kit

157

buffer suite

 29

BufferSpaceProc

 30

C

callback suites

 24

Callback suites description

 28

callbacks
AddPIResourceProc

 31

AdvanceStateProc

 26

AllocateBufferProc

 29

BufferSpaceProc

 30

ColorServicesProc

 26

CountPIResourcesProc

 31

DeletePIResourceProc

 31

DisplayPixelsProc

 25

DisposePIHandleProc

 32

FreeBufferProc

 30

GetPIHandleSizeProc

 32

GetPIResourceProc

 31

GetPropertyProc

 36

HostProc

 27

LockBufferProc

 29

LockPIHandleProc

 32

NewPIHandleProc

 32

PIResampleProc

 34

ProcessEventProc

 25

RecoverSpaceProc

 33

SetPIHandleSizeProc

 32

SetPropertyProc

 36

SpaceProc

 27

TestAbortProc

 25

UnlockBufferProc

 30

UnlockPIHandleProc 33
UpdateProgressProc 25

cfrg resource 19
CNVTPIPL.EXE 21, 22, 23, 39
code fragment manager (Macintosh) 17
Code68K 19
CodePowerPC 19
CodeWarrior, See Metrowerks
color mode data 104
ColorServicesInfo 145
ColorServicesProc 26
complexProperty 36
CountPIResourcesProc 31

D
DeletePIResourceProc 31
DialogUtilities 18
direct callbacks 24
DisplayPixelsProc 25
DisposePIHandleProc 32

disposing complex properties 36
Dissolve 72
DummyExport 65
DummyScan 55

E
encapsulated PostScript files 110
error reporting 14
export modules 65

Index

Adobe Photoshop Software Development Kit 158

ExportRecord parameter block 68
exportSelectorContinue 67
exportSelectorFinish 67
exportSelectorPrepare 66
exportSelectorStart 66

extension modules 12

F
fat plug–ins (Macintosh) 17
filmstrip files 111
filter modules 72

FilterRecord parameter block 76
filterSelectorContinue 74
filterSelectorFinish 75
filterSelectorParameters 73
filterSelectorPrepare 74
filterSelectorStart 74

FilterCaseInfo 48
FlagSet 13
format modules 83

estimate sequence 89
file filtering 84
FormatRecord parameter block 92
formatSelectorEstimateContinue 89
formatSelectorEstimateFinish 89
formatSelectorEstimatePrepare 89
formatSelectorEstimateStart 89
formatSelectorOptionsContinue 88
formatSelectorOptionsFinish 88
formatSelectorOptionsPrepare 88
formatSelectorOptionsStart 88
formatSelectorReadContinue 86
formatSelectorReadFinish 86
formatSelectorReadPrepare 85
formatSelectorReadStart 85
formatSelectorWriteContinue 91
formatSelectorWriteFinish 91
formatSelectorWritePrepare 90
formatSelectorWriteStart 90
options sequence 88
read sequence 85
write sequence 90
writing a file 87

FreeBufferProc 30

G
GetPIHandleSizeProc 32
GetPIResourceProc 31
getPropertyObsolete 36
GetPropertyProc 36

H
handle suite 32
hardware accelerator modules 12
HistoryExport 23, 65
HostProc 27

I
IllustratorExport 23
image resources 91, 104
image services suite 34

Index

Adobe Photoshop Software Development Kit 159

interpolate1D 34
interpolate2D 34

L
load files

Arbitrary Map 116
Brushes 117
Color Table 119
Colors 120
Command Settings File 122
Curves 124
Custom kernel 131
Duotone options 126
Halftone screens 128
Hue/Saturation 129
Ink colors setup 130
Levels 132
Monitor setup 133
Replace color/Color range 134
Scratch Area 135
Selective color 136
Separation setup 137
Separation tables 138
Transfer function 140

load files, description 115
LockBufferProc 29
LockPIHandleProc 32

M
Macintosh

cfrg resource 19
code fragment manager 17
creating plug–ins 17
fat plug–ins 17
PowerMac native plug–ins 17

MACTODOS.EXE 22
memory management strategies 16

setting maxData 16
Metrowerks CodeWarrior 18

notes for CodeWarrior Bronze users 19
notes for CodeWarrior Gold users 19

Microsoft Windows 21

N
NewPIHandleProc 32

O
OSType 13

P
parser modules 12
Paths to Illustrator 65
PHOTOSHO.INI 12, 22
Photoshop EPS files 110
PICFMCodeDesc 44
PiMI resources 17, 53
PiPL 17, 19

PI68KCodeProperty 44
PI68KFPUCodeProperty 44
PICategoryProperty 43

Index

Adobe Photoshop Software Development Kit 160

PIExpFlagsProperty 46
PIFilterCaseInfoProperty 47
PIFilteredExtProperty 50
PIFilteredTypesProperty 50
PIFmtFileTypeProperty 50
PIFmtFlagsProperty 51
PIFmtMaxChannelsProperty 51
PIFmtMaxSizeProperty 51
PIImageModesProperty 43
PIKindProperty 42
PINameProperty 43
PIPowerPCCodeProperty 44
PIPriorityProperty 42
PIProperty structure 40
PIReadExtProperty 50
PIReadTypesProperty 50
PIRequiredHostProperty 43
PIVersionProperty 42
PIWin32X86CodeProperty 45
plug–in property list structure 40

PiPL grammar 151
PIPropertyList 40
PIResampleProc 34
PIUtilities 18, 22
PIWin32X86CodeDesc 45
PIWin32X86CodeProperty 21
plug–in file types and extensions 13
plug–in hosts 10
plug–in modules 10
Plug–in Property List See PiPL
pluginData 14
PLUGINDIRECTORY 12, 22
PlugInInfo (PiMI) 53
PlugInMonitor 148
pluginParamBlock 14
Premiere 111
ProcessEventProc 25
property keys (property suite) 37
property suite 36

propBigNudgeH 37
propBigNudgeV 37
propCaption 38
propChannelName 37
propClippingPathIndex 37
propHardwareGammaTable 38
propImageMode 37
propInterpolationMethod 37
propNumberOfChannels 37
propNumberOfPaths 37
propPathContents 37
propPathName 37
propRulerUnits 37
propSerialString 38
propTargetPathIndex 37
propWorkPathIndex 37

pseudo–resource suite 31
PSImagePlane structure 34
PSPixelMap 142
PSPixelMask 144
PString 13

Index

Adobe Photoshop Software Development Kit 161

R
RecoverSpaceProc 33
resource

cfrg 19
Resources 17

vers resource 17

S
segmentation (680x0) 18
SetPIHandleSizeProc 32
SetPropertyProc 36
simpleProperty 36
SpaceProc 27
Symantec C++ (Windows) 21

T
TestAbortProc 25
TIFF files 113
TypeCreatorPair 13

U
UnlockBufferProc 30
UnlockPIHandleProc 33
UpdateProgressProc 25

V
Version 2.5 11
Visual C++ 21
VPoint 13
VRect 13

W
Windows 21
WinUtils 22
Writing 89

	Title Page
	Table of Contents
	1. Introduction
	2. Plug–in Basics
	Types of plug–in modules
	The plug–in module interface
	Error reporting
	About boxes

	Memory management strategies
	Creating plug–in modules for Mac OS
	Global variable
	Segmentation
	Notes for CodeWarrior Gold users
	Notes for CodeWarrior Bronze users

	Creating plug–in modules for Windows

	3. Plug–in Host Callbacks
	Direct callbacks
	TestAbortProc
	UpdateProgressProc
	ProcessEventProc
	DisplayPixelsProc
	AdvanceStateProc
	ColorServicesProc
	SpaceProc
	HostProc

	Callback suites
	Buffer suite
	AllocateBufferProc
	LockBufferProc
	UnlockBufferProc
	FreeBufferProc
	BufferSpaceProc

	Pseudo–Resource suite
	CountPIResourcesProc
	GetPIResourceProc
	DeletePIResourceProc
	AddPIResourceProc

	Handle suite
	NewPIHandleProc
	DisposePIHandleProc
	GetPIHandleSizeProc
	SetPIHandleSizeProc
	LockPIHandleProc
	UnlockPIHandleProc
	RecoverSpaceProc

	Image services suite
	PIResampleProc
	interpolate1DProc
	interpolate2DProc

	Property suite
	GetPropertyProc
	SetPropertyProc
	Property keys

	4. PiPL Resources
	Creating PiPL resources
	Loading PiPL resources
	Plug–in property lists
	Plug–in property data structure
	General properties
	PIKindProperty
	PIVersionProperty
	PIPriorityProperty
	PIImageModesProperty
	PIRequiredHostProperty
	PICategoryProperty
	PINameProperty

	Code descriptor properties
	PI68KCodeProperty
	PI68KFPUCodeProperty
	PIPowerPCCodeProperty
	PIWin32X86CodeProperty

	Export–specific properties
	PIExpFlagsProperty

	Filter–specific properties
	PIFilterCaseInfoProperty

	Format–specific properties
	PIFmtFileTypeProperty
	PIReadTypesProperty
	PIFilteredTypesProperty
	PIReadExtProperty
	PIFilteredExtProperty
	PIFmtFlagsProperty
	PIFmtMaxSizeProperty
	PIFmtMaxChannelsProperty

	5. PiMI Resources
	PlugInInfo data structure

	6. Acquire Modules
	Calling sequence
	acquireSelectorPrepare
	acquireSelectorStart
	acquireSelectorContinue
	acquireSelectorFinish
	acquireSelectorFinalize

	Error return values
	The Acquire parameter block

	7. Export Modules
	Calling sequence
	exportSelectorPrepare
	exportSelectorStart
	exportSelectorContinue
	exportSelectorFinish

	Error return values
	The Export parameter block

	8. Filter Modules
	Calling sequence
	filterSelectorParameters
	filterSelectorPrepare
	filterSelectorStart
	filterSelectorContinue
	filterSelectorFinish

	Error return values
	The Filter parameter block

	9. Format Modules
	Format module operations
	Reading a file (file filtering)
	formatSelectorFilterFile

	Reading a file (read sequence)
	format SelectorFilterFile
	formatSelectorReadPrepare
	formatSelectorReadStart
	formatSelectorReadContinue
	formatSelectorReadFinish

	Writing a file
	Writing a file (options sequence)
	formatSelectorOptionsPrepare
	formatSelectorOptionsStart
	formatSelectorOptionsContinue
	formatSelectorOptionsFinish

	Writing a file (estimate sequence)
	formatSelectorEstimatePrepare
	formatSelectorEstimateStart
	formatSelectorEstimateContinue
	formatSelectorEstimateFinish

	Writing a file (write sequence)
	formatSelectorWritePrepare
	formatSelectorWriteStart
	formatSelectorWriteContinue
	formatSelectorWriteFinish

	Image resources

	Error return values
	The Format parameter block

	10. Document File Formats
	Image resource blocks
	Image resource ID's

	Path resource format
	Path points
	Path records

	Photoshop 3.0 files
	Photoshop 3.0 files under Windows
	Photoshop 3.0 files under Mac OS
	Photoshop 3.0 file format
	File header section
	Color mode data section
	Image resouces section
	Layer and mask information section
	Image data section
	Layer and mask records

	Photoshop EPS files
	Filmstrip files
	TIFF files

	11. Load File Formats
	Arbitrary Map
	Brushes
	Color Table
	Colors
	Command Settings File
	Curves
	Duotone options
	Halftone screens
	Hue/Saturation
	Ink colors setup
	Custom kernel
	Levels
	Monitor setup
	Replace color/Color range
	Scratch area
	Selective color
	Separation setup
	Separation tables
	Transfer function

	A. Data Structures
	PSPixelMap
	PSPixelMask
	ColorServicesInfo
	PlugInMonitor
	ResolutionInfo
	DisplayInfo

	B. PiPL Grammar
	Index

